These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 38033813)
1. Massive and efficient encapsulation of single cells in monodisperse droplets and collagen-alginate microgels using a microfluidic device. Liu D; Xuanyuan T; Liu X; Fu W; Liu W Front Bioeng Biotechnol; 2023; 11():1281375. PubMed ID: 38033813 [TBL] [Abstract][Full Text] [Related]
2. Microfluidic Encapsulation of Single Cells by Alginate Microgels Using a Trigger-Gellified Strategy. Shao F; Yu L; Zhang Y; An C; Zhang H; Zhang Y; Xiong Y; Wang H Front Bioeng Biotechnol; 2020; 8():583065. PubMed ID: 33154965 [TBL] [Abstract][Full Text] [Related]
3. A Novel Step-T-Junction Microchannel for the Cell Encapsulation in Monodisperse Alginate-Gelatin Microspheres of Varying Mechanical Properties at High Throughput. Ling SD; Liu Z; Ma W; Chen Z; Du Y; Xu J Biosensors (Basel); 2022 Aug; 12(8):. PubMed ID: 36005055 [TBL] [Abstract][Full Text] [Related]
4. Microfluidics single-cell encapsulation reveals that poly-l-lysine-mediated stem cell adhesion to alginate microgels is crucial for cell-cell crosstalk and its self-renewal. Soleymani H; Ghorbani M; Sedghi M; Allahverdi A; Naderi-Manesh H Int J Biol Macromol; 2024 Aug; 274(Pt 2):133418. PubMed ID: 38936577 [TBL] [Abstract][Full Text] [Related]
5. Large-scale single-cell encapsulation in microgels through metastable droplet-templating combined with microfluidic-integration. Zhang H; Zhang L; An C; Zhang Y; Shao F; Gao Y; Zhang Y; Li H; Zhang Y; Ren C; Sun K; He W; Cheng F; Wang H; Weitz DA Biofabrication; 2022 Jun; 14(3):. PubMed ID: 35593920 [TBL] [Abstract][Full Text] [Related]
6. Enhancing the biocompatibility of microfluidics-assisted fabrication of cell-laden microgels with channel geometry. Kim S; Oh J; Cha C Colloids Surf B Biointerfaces; 2016 Nov; 147():1-8. PubMed ID: 27478957 [TBL] [Abstract][Full Text] [Related]
7. Continuous microfluidic encapsulation of single mesenchymal stem cells using alginate microgels as injectable fillers for bone regeneration. An C; Liu W; Zhang Y; Pang B; Liu H; Zhang Y; Zhang H; Zhang L; Liao H; Ren C; Wang H Acta Biomater; 2020 Jul; 111():181-196. PubMed ID: 32450230 [TBL] [Abstract][Full Text] [Related]
8. Microfluidic-templated cell-laden microgels fabricated using phototriggered imine-crosslinking as injectable and adaptable granular gels for bone regeneration. An C; Zhou R; Zhang H; Zhang Y; Liu W; Liu J; Bao B; Sun K; Ren C; Zhang Y; Lin Q; Zhang L; Cheng F; Song J; Zhu L; Wang H Acta Biomater; 2023 Feb; 157():91-107. PubMed ID: 36427687 [TBL] [Abstract][Full Text] [Related]
9. Microfluidic encapsulation of nanoparticles in alginate microgels gelled via competitive ligand exchange crosslinking. Cinel VDP; Taketa TB; de Carvalho BG; de la Torre LG; de Mello LR; da Silva ER; Han SW Biopolymers; 2021 Jul; 112(7):e23432. PubMed ID: 33982812 [TBL] [Abstract][Full Text] [Related]
10. Generation of monodisperse alginate microbeads and in situ encapsulation of cell in microfluidic device. Choi CH; Jung JH; Rhee YW; Kim DP; Shim SE; Lee CS Biomed Microdevices; 2007 Dec; 9(6):855-62. PubMed ID: 17578667 [TBL] [Abstract][Full Text] [Related]
11. A Pump-Free Strategy for the Controllable Generation of Alginate Microgels as Cellular Microcarriers. Qin X; Gan Z; Liu H; Tao T; He J; Li X; Shang D; Li X; Xie F; Qin J ACS Biomater Sci Eng; 2024 Jun; 10(6):3958-3967. PubMed ID: 38711418 [TBL] [Abstract][Full Text] [Related]
12. Synthesis of monodisperse, covalently cross-linked, degradable "smart" microgels using microfluidics. Kesselman LR; Shinwary S; Selvaganapathy PR; Hoare T Small; 2012 Apr; 8(7):1092-8. PubMed ID: 22354786 [TBL] [Abstract][Full Text] [Related]
13. Droplet Microfluidics-Assisted Fabrication of Shape Controllable Iron-Alginate Microgels with Fluorescent Property. Chen J; Shen H; Heng Y; Wang S; Ardekani A; Yang Y; Hu Y Macromol Rapid Commun; 2024 Jul; 45(14):e2400084. PubMed ID: 38653451 [TBL] [Abstract][Full Text] [Related]
14. Cell encapsulation in alginate-based microgels using droplet microfluidics; a review on gelation methods and applications. Mohajeri M; Eskandari M; Ghazali ZS; Ghazali HS Biomed Phys Eng Express; 2022 Feb; 8(2):. PubMed ID: 35073537 [TBL] [Abstract][Full Text] [Related]
15. A home-made pipette droplet microfluidics rapid prototyping and training kit for digital PCR, microorganism/cell encapsulation and controlled microgel synthesis. Chen L; Zhang C; Yadav V; Wong A; Senapati S; Chang HC Sci Rep; 2023 Jan; 13(1):184. PubMed ID: 36604528 [TBL] [Abstract][Full Text] [Related]
16. An integrated microfluidic flow-focusing platform for on-chip fabrication and filtration of cell-laden microgels. Mohamed MGA; Kheiri S; Islam S; Kumar H; Yang A; Kim K Lab Chip; 2019 Apr; 19(9):1621-1632. PubMed ID: 30896015 [TBL] [Abstract][Full Text] [Related]
17. Microfluidic Templated Multicompartment Microgels for 3D Encapsulation and Pairing of Single Cells. Zhang L; Chen K; Zhang H; Pang B; Choi CH; Mao AS; Liao H; Utech S; Mooney DJ; Wang H; Weitz DA Small; 2018 Mar; 14(9):. PubMed ID: 29334173 [TBL] [Abstract][Full Text] [Related]
18. Deterministic Single-Cell Encapsulation in PEG Norbornene Microgels for Promoting Anti-Inflammatory Response and Therapeutic Delivery of Mesenchymal Stromal Cells. Si H; Chen Y; Jiang K; Ma K; Ramsey E; Oakey J; Sun M; Jiang Z Adv Healthc Mater; 2024 Jun; 13(14):e2304386. PubMed ID: 38373601 [TBL] [Abstract][Full Text] [Related]
19. Hydrogel Droplet Microfluidics for High-Throughput Single Molecule/Cell Analysis. Zhu Z; Yang CJ Acc Chem Res; 2017 Jan; 50(1):22-31. PubMed ID: 28029779 [TBL] [Abstract][Full Text] [Related]
20. Microfluidic Fabrication and Applications of Microgels and Hybrid Microgels. Farooqi ZH; Vladisavljević GT; Pamme N; Fatima A; Begum R; Irfan A; Chen M Crit Rev Anal Chem; 2024; 54(7):2435-2449. PubMed ID: 36757081 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]