These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
284 related articles for article (PubMed ID: 3803384)
1. Effect of Ca2+, peroxides, SH reagents, phosphate and aging on the permeability of mitochondrial membranes. Rizzuto R; Pitton G; Azzone GF Eur J Biochem; 1987 Jan; 162(2):239-49. PubMed ID: 3803384 [TBL] [Abstract][Full Text] [Related]
2. Prooxidants open both the mitochondrial permeability transition pore and a low-conductance channel in the inner mitochondrial membrane. Kushnareva YE; Sokolove PM Arch Biochem Biophys; 2000 Apr; 376(2):377-88. PubMed ID: 10775426 [TBL] [Abstract][Full Text] [Related]
3. t-Butylhydroperoxide-induced Ca2+ efflux from liver mitochondria in the presence of physiological concentrations of Mg2+ and ATP. Bernardes CF; Pereira da Silva L; Vercesi AE Biochim Biophys Acta; 1986 Jun; 850(1):41-8. PubMed ID: 2423127 [TBL] [Abstract][Full Text] [Related]
4. Menadione- (2-methyl-1,4-naphthoquinone-) dependent enzymatic redox cycling and calcium release by mitochondria. Frei B; Winterhalter KH; Richter C Biochemistry; 1986 Jul; 25(15):4438-43. PubMed ID: 3092856 [TBL] [Abstract][Full Text] [Related]
5. Regulation of Ca2+ efflux in rat liver mitochondria. Role of membrane potential. Bernardi P; Azzone GF Eur J Biochem; 1983 Aug; 134(2):377-83. PubMed ID: 6191982 [TBL] [Abstract][Full Text] [Related]
7. Mitochondrial membrane protein thiol reactivity with N-ethylmaleimide or mersalyl is modified by Ca2+: correlation with mitochondrial permeability transition. Kowaltowski AJ; Vercesi AE; Castilho RF Biochim Biophys Acta; 1997 Feb; 1318(3):395-402. PubMed ID: 9048976 [TBL] [Abstract][Full Text] [Related]
8. Efflux of magnesium and potassium ions from liver mitochondria induced by inorganic phosphate and by diamide. Siliprandi D; Toninello A; Zoccarato F; Rugolo M; Siliprandi N J Bioenerg Biomembr; 1978 Apr; 10(1-2):1-11. PubMed ID: 95507 [TBL] [Abstract][Full Text] [Related]
9. Mechanism of nitrofurantoin toxicity and oxidative stress in mitochondria. Carbonera D; Angrilli A; Azzone GF Biochim Biophys Acta; 1988 Oct; 936(1):139-47. PubMed ID: 3179282 [TBL] [Abstract][Full Text] [Related]
10. The role of inorganic phosphate in the release of Ca2+ from rat-liver mitochondria. Roos I; Crompton M; Carafoli E Eur J Biochem; 1980 Sep; 110(2):319-25. PubMed ID: 6160036 [TBL] [Abstract][Full Text] [Related]
11. The role of low (< or = 1 mM) phosphate concentrations in regulation of mitochondrial permeability: modulation of matrix free Ca2+ concentration. Kushnareva YE; Haley LM; Sokolove PM Arch Biochem Biophys; 1999 Mar; 363(1):155-62. PubMed ID: 10049510 [TBL] [Abstract][Full Text] [Related]
12. The relationship between mitochondrial membrane permeability, membrane potential, and the retention of Ca2+ by mitochondria. Beatrice MC; Palmer JW; Pfeiffer DR J Biol Chem; 1980 Sep; 255(18):8663-71. PubMed ID: 7410387 [TBL] [Abstract][Full Text] [Related]
13. The thiol crosslinking agent diamide overcomes the apoptosis-inhibitory effect of Bcl-2 by enforcing mitochondrial permeability transition. Zamzami N; Marzo I; Susin SA; Brenner C; Larochette N; Marchetti P; Reed J; Kofler R; Kroemer G Oncogene; 1998 Feb; 16(8):1055-63. PubMed ID: 9519879 [TBL] [Abstract][Full Text] [Related]
14. Effects of the membrane potential upon the Ca(2+)- and cumene hydroperoxide-induced permeabilization of the inner mitochondrial membrane. Novgorodov SA; Gudz TI; Kushnareva YE; Eriksson O; Leikin YN FEBS Lett; 1991 Dec; 295(1-3):77-80. PubMed ID: 1722466 [TBL] [Abstract][Full Text] [Related]
15. Increased permeability of mitochondria during Ca2+ release induced by t-butyl hydroperoxide or oxalacetate. the effect of ruthenium red. Beatrice MC; Stiers DL; Pfeiffer DR J Biol Chem; 1982 Jun; 257(12):7161-71. PubMed ID: 6177691 [TBL] [Abstract][Full Text] [Related]
16. The reduction of diamide by rat liver mitochondria and the role of glutathione. Jocelyn PC Biochem J; 1978 Dec; 176(3):649-64. PubMed ID: 747642 [TBL] [Abstract][Full Text] [Related]
17. Alloxan effects on mitochondria: study of oxygen consumption, fluxes of Mg2+, Ca2+, K+ and adenine nucleotides, membrane potential and volume change in vitro. Boquist L Diabetologia; 1984 Sep; 27(3):379-86. PubMed ID: 6500198 [TBL] [Abstract][Full Text] [Related]
18. On the state of calcium ions in isolated rat liver mitochondria IV. Prevention of phosphate-induced mitochondrial destruction by ruthenium red-insensitive calcium release. Blaich G; Krell H; Pfaff E Biol Chem Hoppe Seyler; 1985 May; 366(5):515-9. PubMed ID: 2408639 [TBL] [Abstract][Full Text] [Related]
19. Pyridine-nucleotide oxidation, Ca2+ cycling and membrane damage during tert-butyl hydroperoxide metabolism by rat-liver mitochondria. Bellomo G; Martino A; Richelmi P; Moore GA; Jewell SA; Orrenius S Eur J Biochem; 1984 Apr; 140(1):1-6. PubMed ID: 6705788 [TBL] [Abstract][Full Text] [Related]
20. The redox state of endogenous pyridine nucleotides can determine both the degree of mitochondrial oxidative stress and the solute selectivity of the permeability transition pore. Zago EB; Castilho RF; Vercesi AE FEBS Lett; 2000 Jul; 478(1-2):29-33. PubMed ID: 10922464 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]