BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 38033854)

  • 41. Interactions between trophoblast cells and the maternal and fetal circulation in the mouse placenta.
    Adamson SL; Lu Y; Whiteley KJ; Holmyard D; Hemberger M; Pfarrer C; Cross JC
    Dev Biol; 2002 Oct; 250(2):358-73. PubMed ID: 12376109
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Placental model as an important tool to study maternal-fetal interface.
    Gonçalves BM; Graceli JB; da Rocha PB; Tilli HP; Vieira EM; de Sibio MT; Peghinelli VV; Deprá IC; Mathias LS; Olímpio RMC; Belik VC; Nogueira CR
    Reprod Toxicol; 2022 Sep; 112():7-13. PubMed ID: 35714933
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Advances in understanding the crosstalk between mother and fetus on iron utilization.
    Lakhal-Littleton S
    Semin Hematol; 2021 Jul; 58(3):153-160. PubMed ID: 34389107
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Expression of organic anion transporting polypeptide 1c1 and monocarboxylate transporter 8 in the rat placental barrier and the compensatory response to thyroid dysfunction.
    Sun YN; Liu YJ; Zhang L; Ye Y; Lin LX; Li YM; Yan YQ; Chen ZP
    PLoS One; 2014; 9(4):e96047. PubMed ID: 24763672
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Induction of human trophoblast stem-like cells from primed pluripotent stem cells.
    Jang YJ; Kim M; Lee BK; Kim J
    Proc Natl Acad Sci U S A; 2022 May; 119(20):e2115709119. PubMed ID: 35537047
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Placental regulation of maternal-fetal interactions and brain development.
    Hsiao EY; Patterson PH
    Dev Neurobiol; 2012 Oct; 72(10):1317-26. PubMed ID: 22753006
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Current understanding in deciphering trophoblast cell differentiation during human placentation.
    Li Q; Wu H; Wang Y; Wang H
    Biol Reprod; 2022 Jul; 107(1):317-326. PubMed ID: 35478014
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cell dynamics in human villous trophoblast.
    Aplin JD; Jones CJP
    Hum Reprod Update; 2021 Aug; 27(5):904-922. PubMed ID: 34125187
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Integrating High-Throughput Approaches and
    Lee BK; Kim J
    Front Cell Dev Biol; 2021; 9():673065. PubMed ID: 34150768
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Trophoblast cell differentiation and organization: role of fetal and ovarian signals.
    Roby KF; Soares MJ
    Placenta; 1993; 14(5):529-45. PubMed ID: 8290493
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A Potential Role and Contribution of Androgens in Placental Development and Pregnancy.
    Parsons AM; Bouma GJ
    Life (Basel); 2021 Jul; 11(7):. PubMed ID: 34357016
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Interleukin-34 is present at the fetal-maternal interface and induces immunoregulatory macrophages of a decidual phenotype in vitro.
    Lindau R; Mehta RB; Lash GE; Papapavlou G; Boij R; Berg G; Jenmalm MC; Ernerudh J; Svensson-Arvelund J
    Hum Reprod; 2018 Apr; 33(4):588-599. PubMed ID: 29579271
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Establishment of a confluent monolayer model with human primary trophoblast cells: novel insights into placental glucose transport.
    Huang X; Lüthi M; Ontsouka EC; Kallol S; Baumann MU; Surbek DV; Albrecht C
    Mol Hum Reprod; 2016 Jun; 22(6):442-56. PubMed ID: 26931579
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Zika virus targets human trophoblast stem cells and prevents syncytialization in placental trophoblast organoids.
    Wu H; Huang XY; Sun MX; Wang Y; Zhou HY; Tian Y; He B; Li K; Li DY; Wu AP; Wang H; Qin CF
    Nat Commun; 2023 Sep; 14(1):5541. PubMed ID: 37684223
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Actions of placental and fetal adrenal steroid hormones in primate pregnancy.
    Pepe GJ; Albrecht ED
    Endocr Rev; 1995 Oct; 16(5):608-48. PubMed ID: 8529574
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Single-cell transcriptional profiling reveals cellular and molecular divergence in human maternal-fetal interface.
    Wang Q; Li J; Wang S; Deng Q; An Y; Xing Y; Dai X; Li Z; Ma Q; Wang K; Liu C; Yuan Y; Dong G; Zhang T; Yang H; Du Y; Hou Y; Ke W; Shang Z
    Sci Rep; 2022 Jun; 12(1):10892. PubMed ID: 35764880
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The placenta in fetal thyroid hormone delivery: from normal physiology to adaptive mechanisms in complicated pregnancies.
    Eerdekens A; Verhaeghe J; Darras V; Naulaers G; Van den Berghe G; Langouche L; Vanhole C
    J Matern Fetal Neonatal Med; 2020 Nov; 33(22):3857-3866. PubMed ID: 30821546
    [No Abstract]   [Full Text] [Related]  

  • 58. Current approaches and developments in transcript profiling of the human placenta.
    Yong HEJ; Chan SY
    Hum Reprod Update; 2020 Nov; 26(6):799-840. PubMed ID: 33043357
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The role of placental nutrient sensing in maternal-fetal resource allocation.
    Díaz P; Powell TL; Jansson T
    Biol Reprod; 2014 Oct; 91(4):82. PubMed ID: 25122064
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Placental Trophoblast-Inspired Lipid Bilayers for Cell-Free Investigation of Molecular Interactions.
    Bailey-Hytholt CM; Shen TL; Nie B; Tripathi A; Shukla A
    ACS Appl Mater Interfaces; 2020 Jul; 12(28):31099-31111. PubMed ID: 32558532
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.