BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 38034743)

  • 1. Progress in the application of graphene and its derivatives to osteogenesis.
    Guo J; Cao G; Wei S; Han Y; Xu P
    Heliyon; 2023 Nov; 9(11):e21872. PubMed ID: 38034743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Research Progress of Graphene and Derivatives Nanocomposite in Orthopedics Application].
    Zhao W; Zhang S; Yang Q; Jiang D
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2016 Jun; 33(3):604-8. PubMed ID: 29709167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Research progress in graphene derivatives promoting bone regeneration].
    Liu CY; Fu L; Wang HC; Wang N; Zhang YD; Zhou YM
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2019 Sep; 54(9):642-645. PubMed ID: 31550790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Concentration-dependent cellular behavior and osteogenic differentiation effect induced in bone marrow mesenchymal stem cells treated with magnetic graphene oxide.
    He Y; Li Y; Chen G; Wei C; Zhang X; Zeng B; Yi C; Wang C; Yu D
    J Biomed Mater Res A; 2020 Jan; 108(1):50-60. PubMed ID: 31443121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro effect of graphene structures as an osteoinductive factor in bone tissue engineering: A systematic review.
    Mohammadrezaei D; Golzar H; Rezai Rad M; Omidi M; Rashedi H; Yazdian F; Khojasteh A; Tayebi L
    J Biomed Mater Res A; 2018 Aug; 106(8):2284-2343. PubMed ID: 29611900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graphene supports in vitro proliferation and osteogenic differentiation of goat adult mesenchymal stem cells: potential for bone tissue engineering.
    Elkhenany H; Amelse L; Lafont A; Bourdo S; Caldwell M; Neilsen N; Dervishi E; Derek O; Biris AS; Anderson D; Dhar M
    J Appl Toxicol; 2015 Apr; 35(4):367-74. PubMed ID: 25220951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Research progress of graphene and its derivatives in repair of peripheral nerve defect].
    Yao R; Wang B; Wang G
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2018 Nov; 32(11):1483-1487. PubMed ID: 30417629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graphene and its nanostructure derivatives for use in bone tissue engineering: Recent advances.
    Shadjou N; Hasanzadeh M
    J Biomed Mater Res A; 2016 May; 104(5):1250-75. PubMed ID: 26748447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Osteogenic protein-1 for long bone nonunion: an evidence-based analysis.
    Medical Advisory Secretariat
    Ont Health Technol Assess Ser; 2005; 5(6):1-57. PubMed ID: 23074475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D bioprinting of graphene oxide-incorporated cell-laden bone mimicking scaffolds for promoting scaffold fidelity, osteogenic differentiation and mineralization.
    Zhang J; Eyisoylu H; Qin XH; Rubert M; Müller R
    Acta Biomater; 2021 Feb; 121():637-652. PubMed ID: 33326888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced bone regeneration of the silk fibroin electrospun scaffolds through the modification of the graphene oxide functionalized by BMP-2 peptide.
    Wu J; Zheng A; Liu Y; Jiao D; Zeng D; Wang X; Cao L; Jiang X
    Int J Nanomedicine; 2019; 14():733-751. PubMed ID: 30705589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced osteogenic differentiation and bone regeneration of poly(lactic-co-glycolic acid) by graphene via activation of PI3K/Akt/GSK-3β/β-catenin signal circuit.
    Wu X; Zheng S; Ye Y; Wu Y; Lin K; Su J
    Biomater Sci; 2018 May; 6(5):1147-1158. PubMed ID: 29561031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scaffold-Free Spheroids with Two-Dimensional Heteronano-Layers (2DHNL) Enabling Stem Cell and Osteogenic Factor Codelivery for Bone Repair.
    Liu X; Li L; Gaihre B; Park S; Li Y; Terzic A; Elder BD; Lu L
    ACS Nano; 2022 Feb; 16(2):2741-2755. PubMed ID: 35072461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a micro-tissue-mediated injectable bone tissue engineering strategy for large segmental bone defect treatment.
    Wu D; Wang Z; Wang J; Geng Y; Zhang Z; Li Y; Li Q; Zheng Z; Cao Y; Zhang ZY
    Stem Cell Res Ther; 2018 Nov; 9(1):331. PubMed ID: 30486863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphene Oxide Enhances Chitosan-Based 3D Scaffold Properties for Bone Tissue Engineering.
    Dinescu S; Ionita M; Ignat SR; Costache M; Hermenean A
    Int J Mol Sci; 2019 Oct; 20(20):. PubMed ID: 31614903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The application of graphene-based biomaterials in biomedicine.
    Han S; Sun J; He S; Tang M; Chai R
    Am J Transl Res; 2019; 11(6):3246-3260. PubMed ID: 31312342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of graphene oxide and graphene oxide quantum dots on the osteogenic differentiation of stem cells from human exfoliated deciduous teeth.
    Yang X; Zhao Q; Chen Y; Fu Y; Lu S; Yu X; Yu D; Zhao W
    Artif Cells Nanomed Biotechnol; 2019 Dec; 47(1):822-832. PubMed ID: 30873880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene: A Versatile Carbon-Based Material for Bone Tissue Engineering.
    Dubey N; Bentini R; Islam I; Cao T; Castro Neto AH; Rosa V
    Stem Cells Int; 2015; 2015():804213. PubMed ID: 26124843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-Dimensional Black Phosphorus and Graphene Oxide Nanosheets Synergistically Enhance Cell Proliferation and Osteogenesis on 3D Printed Scaffolds.
    Liu X; Miller AL; Park S; George MN; Waletzki BE; Xu H; Terzic A; Lu L
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):23558-23572. PubMed ID: 31199116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D printed biocompatible graphene oxide, attapulgite, and collagen composite scaffolds for bone regeneration.
    Qin W; Li C; Liu C; Wu S; Liu J; Ma J; Chen W; Zhao H; Zhao X
    J Biomater Appl; 2022 May; 36(10):1838-1851. PubMed ID: 35196910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.