These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 3803485)

  • 1. Contribution of retinal versus extraretinal signals towards visual localization in goal-directed movements.
    Bock O
    Exp Brain Res; 1986; 64(3):476-82. PubMed ID: 3803485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimal contributions of head and eye positions to spatial accuracy in man tested by visually directed pointing.
    Rossetti Y; Tadary B; Prablanc C
    Exp Brain Res; 1994; 97(3):487-96. PubMed ID: 8187860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visual signals contribute to the coding of gaze direction.
    Blouin J; Amade N; Vercher JL; Teasdale N; Gauthier GM
    Exp Brain Res; 2002 Jun; 144(3):281-92. PubMed ID: 12021810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gaze-centered remapping of remembered visual space in an open-loop pointing task.
    Henriques DY; Klier EM; Smith MA; Lowy D; Crawford JD
    J Neurosci; 1998 Feb; 18(4):1583-94. PubMed ID: 9454863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The relative contribution of retinal and extraretinal signals in determining the accuracy of reaching movements in normal subjects and a deafferented patient.
    Blouin J; Gauthier GM; Vercher JL; Cole J
    Exp Brain Res; 1996 Apr; 109(1):148-53. PubMed ID: 8740218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Viewer-centered frame of reference for pointing to memorized targets in three-dimensional space.
    McIntyre J; Stratta F; Lacquaniti F
    J Neurophysiol; 1997 Sep; 78(3):1601-18. PubMed ID: 9310446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensorimotor integration compensates for visual localization errors during smooth pursuit eye movements.
    van Beers RJ; Wolpert DM; Haggard P
    J Neurophysiol; 2001 May; 85(5):1914-22. PubMed ID: 11353008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Curvature of visual space under vertical eye rotation: implications for spatial vision and visuomotor control.
    Crawford JD; Henriques DY; Vilis T
    J Neurosci; 2000 Mar; 20(6):2360-8. PubMed ID: 10704510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The interaction of visual and proprioceptive inputs in pointing to actual and remembered targets in Parkinson's disease.
    Adamovich SV; Berkinblit MB; Hening W; Sage J; Poizner H
    Neuroscience; 2001; 104(4):1027-41. PubMed ID: 11457588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Representation of heading direction in far and near head space.
    Poljac E; van den Berg AV
    Exp Brain Res; 2003 Aug; 151(4):501-13. PubMed ID: 12830343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visual object localisation in space. Interaction of retinal, eye position, vestibular and neck proprioceptive information.
    Mergner T; Nasios G; Maurer C; Becker W
    Exp Brain Res; 2001 Nov; 141(1):33-51. PubMed ID: 11685409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for implication of primate area V1 in neural 3-D spatial localization processing.
    Trotter Y; Celebrini S; Durand JB
    J Physiol Paris; 2004; 98(1-3):125-34. PubMed ID: 15477027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The coding and updating of visuospatial memory for goal-directed reaching and pointing.
    Thompson AA; Henriques DY
    Vision Res; 2011 Apr; 51(8):819-26. PubMed ID: 21237190
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extraretinal eye position signals determine perceived target location when they conflict with visual cues.
    Rine RM; Skavenski AA
    Vision Res; 1997 Mar; 37(6):775-87. PubMed ID: 9156223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extraretinal information about eye position during involuntary eye movement: optokinetic afternystagmus.
    Bedell HE; Klopfenstein JF; Yuan NY
    Percept Psychophys; 1989 Dec; 46(6):579-86. PubMed ID: 2587187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Eye and neck proprioceptive messages contribute to the spatial coding of retinal input in visually oriented activities.
    Roll R; Velay JL; Roll JP
    Exp Brain Res; 1991; 85(2):423-31. PubMed ID: 1893990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inactivation of macaque lateral intraparietal area delays initiation of the second saccade predominantly from contralesional eye positions in a double-saccade task.
    Li CS; Andersen RA
    Exp Brain Res; 2001 Mar; 137(1):45-57. PubMed ID: 11310171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Allocentric cues do not always improve whole body reaching performance.
    Hondzinski JM; Cui Y
    Exp Brain Res; 2006 Sep; 174(1):60-73. PubMed ID: 16565811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Retinal and extra-retinal contribution to position coding.
    Magne P; Coello Y
    Behav Brain Res; 2002 Oct; 136(1):277-87. PubMed ID: 12385814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On-line vs. off-line utilization of peripheral visual afferent information to ensure spatial accuracy of goal-directed movements.
    Bédard P; Proteau L
    Exp Brain Res; 2004 Sep; 158(1):75-85. PubMed ID: 15029468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.