BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 38034888)

  • 1. A new algorithm for an old problem: Reducing false alarms and alarm fatigue for ventricular tachycardia detection in the hospital setting.
    Harvey M
    Heart Rhythm O2; 2023 Nov; 4(11):723-724. PubMed ID: 38034888
    [No Abstract]   [Full Text] [Related]  

  • 2. Reducing false alarm rates for critical arrhythmias using the arterial blood pressure waveform.
    Aboukhalil A; Nielsen L; Saeed M; Mark RG; Clifford GD
    J Biomed Inform; 2008 Jun; 41(3):442-51. PubMed ID: 18440873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detecting False Alarms by Analyzing Alarm-Context Information: Algorithm Development and Validation.
    Fernandes C; Miles S; Lucena CJP
    JMIR Med Inform; 2020 May; 8(5):e15407. PubMed ID: 32432551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Patient characteristics associated with false arrhythmia alarms in intensive care.
    Harris PR; Zègre-Hemsey JK; Schindler D; Bai Y; Pelter MM; Hu X
    Ther Clin Risk Manag; 2017; 13():499-513. PubMed ID: 28458554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. False ventricular tachycardia alarm suppression in the ICU based on the discrete wavelet transform in the ECG signal.
    Salas-Boni R; Bai Y; Harris PR; Drew BJ; Hu X
    J Electrocardiol; 2014; 47(6):775-80. PubMed ID: 25172188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insights into the problem of alarm fatigue with physiologic monitor devices: a comprehensive observational study of consecutive intensive care unit patients.
    Drew BJ; Harris P; Zègre-Hemsey JK; Mammone T; Schindler D; Salas-Boni R; Bai Y; Tinoco A; Ding Q; Hu X
    PLoS One; 2014; 9(10):e110274. PubMed ID: 25338067
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated False Alarm Reduction in a Real-Life Intensive Care Setting Using Motion Detection.
    Muroi C; Meier S; De Luca V; Mack DJ; Strässle C; Schwab P; Karlen W; Keller E
    Neurocrit Care; 2020 Apr; 32(2):419-426. PubMed ID: 31290067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Artificial Intelligence Technologies for Coping with Alarm Fatigue in Hospital Environments Because of Sensory Overload: Algorithm Development and Validation.
    Fernandes CO; Miles S; Lucena CJP; Cowan D
    J Med Internet Res; 2019 Nov; 21(11):e15406. PubMed ID: 31769762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Technological Distractions (Part 2): A Summary of Approaches to Manage Clinical Alarms With Intent to Reduce Alarm Fatigue.
    Winters BD; Cvach MM; Bonafide CP; Hu X; Konkani A; O'Connor MF; Rothschild JM; Selby NM; Pelter MM; McLean B; Kane-Gill SL;
    Crit Care Med; 2018 Jan; 46(1):130-137. PubMed ID: 29112077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel approach to cardiac alarm management on telemetry units.
    Whalen DA; Covelle PM; Piepenbrink JC; Villanova KL; Cuneo CL; Awtry EH
    J Cardiovasc Nurs; 2014; 29(5):E13-22. PubMed ID: 24365870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alarm setting for the critically ill patient: a descriptive pilot survey of nurses' perceptions of current practice in an Australian Regional Critical Care Unit.
    Christensen M; Dodds A; Sauer J; Watts N
    Intensive Crit Care Nurs; 2014 Aug; 30(4):204-10. PubMed ID: 24703797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of false arrhythmia alarms with emphasis on ventricular tachycardia.
    Rodrigues R; Couto P
    Physiol Meas; 2016 Aug; 37(8):1326-39. PubMed ID: 27454934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clinical Alarms in Intensive Care Units: Perceived Obstacles of Alarm Management and Alarm Fatigue in Nurses.
    Cho OM; Kim H; Lee YW; Cho I
    Healthc Inform Res; 2016 Jan; 22(1):46-53. PubMed ID: 26893950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Critical care nurses' knowledge of alarm fatigue and practices towards alarms: A multicentre study.
    Casey S; Avalos G; Dowling M
    Intensive Crit Care Nurs; 2018 Oct; 48():36-41. PubMed ID: 29793861
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reducing False Arrhythmia Alarms Using Different Methods of Probability and Class Assignment in Random Forest Learning Methods.
    Gajowniczek K; Grzegorczyk I; Ząbkowski T
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30986930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlating data from different sensors to increase the positive predictive value of alarms: an empiric assessment.
    Bitan Y; O'Connor MF
    F1000Res; 2012; 1():45. PubMed ID: 24358810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduction of clinically irrelevant alarms in patient monitoring by adaptive time delays.
    Schmid F; Goepfert MS; Franz F; Laule D; Reiter B; Goetz AE; Reuter DA
    J Clin Monit Comput; 2017 Feb; 31(1):213-219. PubMed ID: 26621389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of educational interventions in managing nurses' alarm fatigue: An integrative review.
    Nyarko BA; Nie H; Yin Z; Chai X; Yue L
    J Clin Nurs; 2023 Jul; 32(13-14):2985-2997. PubMed ID: 35968774
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Research of Methods to Reduce Alarm Fatigue of Monitoring System].
    Liu M; Sun Z; Ye W; Liu S; He X; Wang C; Li Y
    Zhongguo Yi Liao Qi Xie Za Zhi; 2020 Dec; 44(6):481-486. PubMed ID: 33314853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reducing Pulse Oximetry False Alarms Without Missing Life-Threatening Events.
    Nguyen H; Jang S; Ivanov R; Bonafide CP; Weimer J; Lee I
    Smart Health (Amst); 2018 Dec; 9-10():287-296. PubMed ID: 30778396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.