These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 3803494)

  • 1. Visual cortical lesions abolish the use of motion parallax in the Mongolian gerbil.
    Ellard CG; Goodale MA; Scorfield DM; Lawrence C
    Exp Brain Res; 1986; 64(3):599-602. PubMed ID: 3803494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distance estimation in the Mongolian gerbil: the role of dynamic depth cues.
    Ellard CG; Goodale MA; Timney B
    Behav Brain Res; 1984 Oct; 14(1):29-39. PubMed ID: 6518079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cortical and tectal control of visual orientation in the gerbil: evidence for parallel channels.
    Mlinar EJ; Goodale MA
    Exp Brain Res; 1984; 55(1):33-48. PubMed ID: 6745353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of lesions of anteromedial cortex on a ballistic visuomotor task in the Mongolian gerbil (Meriones unguiculatus).
    Ellard CG; Ilkov-Moor SS
    Behav Brain Res; 1995 Apr; 68(1):53-6. PubMed ID: 7619305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Context dependence of head bobs in gerbils and potential neural contributions.
    Kui GG; Krysiak M; Banda K; Rodman HR
    Behav Brain Res; 2022 Feb; 418():113622. PubMed ID: 34648795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blindsight in rodents: the use of a 'high-level' distance cue in gerbils with lesions of primary visual cortex.
    Carey DP; Goodale MA; Sprowl EG
    Behav Brain Res; 1990 May; 38(3):283-9. PubMed ID: 2363844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of the predorsal bundle in head and body movements elicited by electrical stimulation of the superior colliculus in the Mongolian gerbil.
    Ellard CG; Goodale MA
    Exp Brain Res; 1986; 64(3):421-33. PubMed ID: 3803481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visual 'cortical-recipient' and 'tectal-recipient' pontine zones play distinct roles in cat visuomotor performance.
    Levesque F; Fabre-Thorpe M
    Behav Brain Res; 1990 Jul; 39(2):157-66. PubMed ID: 2390198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Projections from visual areas of the cerebral cortex to pretectal nuclear complex, terminal accessory optic nuclei, and superior colliculus in macaque monkey.
    Lui F; Gregory KM; Blanks RH; Giolli RA
    J Comp Neurol; 1995 Dec; 363(3):439-60. PubMed ID: 8847410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subdivisions of the dorsal raphe nucleus projecting to the lateral geniculate nucleus and primary visual cortex in the Mongolian gerbil.
    Janusonis S; Fite KV; Bengston L
    Neuroreport; 2003 Mar; 14(3):459-62. PubMed ID: 12634503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visual desynchronization of cortical EEG impaired by lesions of superior colliculus in rats.
    Dean P; Redgrave P; Molton L
    J Neurophysiol; 1984 Oct; 52(4):625-37. PubMed ID: 6491709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance on the visual cliff by cats with marginal gyrus lesions.
    Cornwell P; Overman W; Levitsky C; Shipley J; Lezynski B
    J Comp Physiol Psychol; 1976 Oct; 90(10):996-1010. PubMed ID: 965522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural mechanisms involved in the control of the eye-head-neck co-ordinated movement: a review of literature with an emphasis on future directions for the chiropractic profession.
    Fitz-Ritson D
    J Manipulative Physiol Ther; 1984 Dec; 7(4):251-60. PubMed ID: 6394684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A functional analysis of the collicular output pathways: a dissociation of deficits following lesions of the dorsal tegmental decussation and the ipsilateral collicular efferent bundle in the Mongolian gerbil.
    Ellard CG; Goodale MA
    Exp Brain Res; 1988; 71(2):307-19. PubMed ID: 3169166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Eye movements provide the extra-retinal signal required for the perception of depth from motion parallax.
    Nawrot M
    Vision Res; 2003 Jun; 43(14):1553-62. PubMed ID: 12782069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of pretectal and superior collicular lesions on binocular vision.
    Lawler KA; Cowey A
    Exp Brain Res; 1986; 63(2):402-8. PubMed ID: 3758257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Short-latency visual input to the subthalamic nucleus is provided by the midbrain superior colliculus.
    Coizet V; Graham JH; Moss J; Bolam JP; Savasta M; McHaffie JG; Redgrave P; Overton PG
    J Neurosci; 2009 Apr; 29(17):5701-9. PubMed ID: 19403836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visual activation of neurons in the primate pulvinar depends on cortex but not colliculus.
    Bender DB
    Brain Res; 1983 Nov; 279(1-2):258-61. PubMed ID: 6640346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New methods for analysis of vision in the gerbil.
    Ingle DJ
    Behav Brain Res; 1981 Sep; 3(2):151-73. PubMed ID: 7271985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuronal mechanisms in visual perception.
    Pöppel E; Held R; Dowling JE
    Neurosci Res Program Bull; 1977 Oct; 15(3):313-9, 323-553. PubMed ID: 414150
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.