These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 38034978)

  • 61. Controlling the orientations of gold nanorods inside highly packed 2D arrays.
    Mahmoud MA
    Phys Chem Chem Phys; 2014 Dec; 16(47):26153-62. PubMed ID: 25360895
    [TBL] [Abstract][Full Text] [Related]  

  • 62. DNA functionalized gold nanorods/nanoplates assembly as sensitive LSPR-based sensor for label-free detection of mercury ions.
    Li D; Zheng G; Ding X; Wang J; Liu J; Kong L
    Colloids Surf B Biointerfaces; 2013 Oct; 110():485-8. PubMed ID: 23693125
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Controlled etching and tapering of Au nanorods using cysteamine.
    Szychowski B; Leng H; Pelton M; Daniel MC
    Nanoscale; 2018 Sep; 10(35):16830-16838. PubMed ID: 30167608
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Dispersive Plasmon Damping in Single Gold Nanorods by Platinum Adsorbates.
    Xu P; Lu X; Han S; Ou W; Li Y; Chen S; Xue J; Ding Y; Ni W
    Small; 2016 Sep; 12(36):5081-5089. PubMed ID: 27159087
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Gold nanorods embedded in titanium oxide film for sensing applications.
    Takahashi Y; Miyahara N; Yamada S
    Anal Sci; 2013; 29(1):101-5. PubMed ID: 23303093
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Different Plasmon Sensing Behavior of Silver and Gold Nanorods.
    Mahmoud MA; El-Sayed MA
    J Phys Chem Lett; 2013 May; 4(9):1541-5. PubMed ID: 26282312
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A wavelength-modulated localized surface plasmon resonance (LSPR) optical fiber sensor for sensitive detection of mercury(II) ion by gold nanoparticles-DNA conjugates.
    Jia S; Bian C; Sun J; Tong J; Xia S
    Biosens Bioelectron; 2018 Aug; 114():15-21. PubMed ID: 29775854
    [TBL] [Abstract][Full Text] [Related]  

  • 68. One-pot two-step synthesis of core-shell mesoporous silica-coated gold nanoparticles.
    Song JT; Zhang XS; Qin MY; Zhao YD
    Dalton Trans; 2015 May; 44(17):7752-6. PubMed ID: 25828393
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Surface plasmon coupling electrochemiluminescence assay based on the use of AuNP@C
    Zhang Q; Liu Y; Nie Y; Ma Q; Zhao B
    Mikrochim Acta; 2019 Aug; 186(9):656. PubMed ID: 31468187
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Exploration of the growth process of ultrathin silica shells on the surface of gold nanorods by the localized surface plasmon resonance.
    Li C; Li Y; Ling Y; Lai Y; Wu C; Zhao Y
    Nanotechnology; 2014 Jan; 25(4):045704. PubMed ID: 24394626
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Gram-Scale Synthesis of Isolated Monodisperse Gold Nanorods.
    Khanal BP; Zubarev ER
    Chemistry; 2019 Jan; 25(6):1595-1600. PubMed ID: 30471145
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Selective aggregation of polyanion-coated gold nanorods induced by divalent metal ions in an aqueous solution.
    Yang YI; Choi I; Hong S; Lee S; Kang T; Lee H; Yil J
    J Nanosci Nanotechnol; 2010 May; 10(5):3538-42. PubMed ID: 20358995
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Chemical redox-regulated mesoporous silica-coated gold nanorods for colorimetric probing of Hg2+ and S2-.
    Wang G; Chen Z; Wang W; Yan B; Chen L
    Analyst; 2011 Jan; 136(1):174-8. PubMed ID: 20877888
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Indocyanine Green Derivative Covalently Conjugated with Gold Nanorods for Multimodal Phototherapy of Fibrosarcoma Cells.
    Luo T; Qian X; Lu Z; Shi Y; Yao Z; Chai X; Ren Q
    J Biomed Nanotechnol; 2015 Apr; 11(4):600-12. PubMed ID: 26310067
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Gold nanorods for in-drop colorimetric determination of thiomersal after photochemical decomposition.
    Martín-Alonso M; Pena-Pereira F; Lavilla I; Bendicho C
    Mikrochim Acta; 2018 Mar; 185(4):221. PubMed ID: 29594736
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Tailoring optical cross sections of gold nanorods at a target plasmonic resonance wavelength using bromosalicylic acid.
    Zou W; Xie H; Ye Y; Ni W
    RSC Adv; 2019 May; 9(28):16028-16034. PubMed ID: 35521416
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Coupling Resonances of Surface Plasmon in Gold Nanorod/Copper Chalcogenide Core-Shell Nanostructures and Their Enhanced Photothermal Effect.
    Li Y; Pan G; Liu Q; Ma L; Xie Y; Zhou L; Hao Z; Wang Q
    Chemphyschem; 2018 Jun; ():. PubMed ID: 29863808
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Atomic-Scale Structure of Mesoporous Silica-Encapsulated Pt and PtSn Nanoparticles Revealed by Dynamic Nuclear Polarization- Enhanced 29Si MAS NMR Spectroscopy.
    Zhao EW; Maligal-Ganesh R; Mentink-Vigier F; Zhao TY; Du Y; Pei Y; Huang W; Bowers CR
    J Phys Chem C Nanomater Interfaces; 2019 Mar; 123(12):7299-7307. PubMed ID: 31186824
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Tuning nanoscale plasmon-exciton coupling
    Dey J; Virdi A; Chandra M
    Nanoscale; 2023 Nov; 15(44):17879-17888. PubMed ID: 37888869
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A sensitive localized surface plasmon resonance sensor for determining mercury(II) ion using noble metal nanoparticles as probe.
    Bi N; Chen Y; Qi H; Zheng X; Chen Y; Liao X; Zhang H; Tian Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Sep; 95():276-81. PubMed ID: 22647401
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.