These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 38035359)

  • 21. Climate change threats to population health and well-being: the imperative of protective solutions that will last.
    Kjellstrom T; McMichael AJ
    Glob Health Action; 2013 Apr; 6():20816. PubMed ID: 23561024
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Connecting Climate Change Mitigation to Global Land Regeneration, Doubling Worldwide Livestock, and Reduction of Early Deaths from Noncommunicable Diseases.
    Cundiff DK
    Cureus; 2023 Jan; 15(1):e33253. PubMed ID: 36741611
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cities' Role in Mitigating United States Food System Greenhouse Gas Emissions.
    Mohareb EA; Heller MC; Guthrie PM
    Environ Sci Technol; 2018 May; 52(10):5545-5554. PubMed ID: 29717606
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mitigation of global greenhouse gas emissions from waste: conclusions and strategies from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. Working Group III (Mitigation).
    Bogner J; Pipatti R; Hashimoto S; Diaz C; Mareckova K; Diaz L; Kjeldsen P; Monni S; Faaij A; Gao Q; Zhang T; Ahmed MA; Sutamihardja RT; Gregory R;
    Waste Manag Res; 2008 Feb; 26(1):11-32. PubMed ID: 18338699
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Responses of greenhouse gas emissions to residue returning in China's croplands and influential factors: A meta-analysis.
    Wang XD; He C; Cheng HY; Liu BY; Li SS; Wang Q; Liu Y; Zhao X; Zhang HL
    J Environ Manage; 2021 Jul; 289():112486. PubMed ID: 33831757
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Changes in global food consumption increase GHG emissions despite efficiency gains along global supply chains.
    Li Y; Zhong H; Shan Y; Hang Y; Wang D; Zhou Y; Hubacek K
    Nat Food; 2023 Jun; 4(6):483-495. PubMed ID: 37322300
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Moral Reasons for Individuals in High-Income Countries to Limit Beef Consumption.
    Barnhill A; Bernstein J; Faden R; McLaren R; Rieder TN; Fanzo J
    Food Ethics; 2022; 7(2):11. PubMed ID: 35757112
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biogeochemical transformation of greenhouse gas emissions from terrestrial to atmospheric environment and potential feedback to climate forcing.
    Shakoor A; Ashraf F; Shakoor S; Mustafa A; Rehman A; Altaf MM
    Environ Sci Pollut Res Int; 2020 Nov; 27(31):38513-38536. PubMed ID: 32770337
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Animal board invited review: Specialising and intensifying cattle production for better efficiency and less global warming: contrasting results for milk and meat co-production at different scales.
    Faverdin P; Guyomard H; Puillet L; Forslund A
    Animal; 2022 Jan; 16(1):100431. PubMed ID: 34996025
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Availability of disaggregated greenhouse gas emissions from beef cattle production: a systematic review.
    Lynch J
    Environ Impact Assess Rev; 2019 May; 76():69-78. PubMed ID: 31388221
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Potential greenhouse gas reductions from Natural Climate Solutions in Oregon, USA.
    Graves RA; Haugo RD; Holz A; Nielsen-Pincus M; Jones A; Kellogg B; Macdonald C; Popper K; Schindel M
    PLoS One; 2020; 15(4):e0230424. PubMed ID: 32275725
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Retrospective and projected warming-equivalent emissions from global livestock and cattle calculated with an alternative climate metric denoted GWP.
    Del Prado A; Lindsay B; Tricarico J
    PLoS One; 2023; 18(10):e0288341. PubMed ID: 37782671
    [TBL] [Abstract][Full Text] [Related]  

  • 33. How advances in animal efficiency and management have affected beef cattle's water intensity in the United States: 1991 compared to 2019.
    Klopatek SC; Oltjen JW
    J Anim Sci; 2022 Nov; 100(11):. PubMed ID: 36063042
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Does biochar accelerate the mitigation of greenhouse gaseous emissions from agricultural soil? - A global meta-analysis.
    Shakoor A; Arif MS; Shahzad SM; Farooq TH; Ashraf F; Altaf MM; Ahmed W; Tufail MA; Ashraf M
    Environ Res; 2021 Nov; 202():111789. PubMed ID: 34333013
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Eating beef: cattle, methane and food production.
    Wahlquist ÅK
    Asia Pac J Clin Nutr; 2013; 22(1):16-24. PubMed ID: 23353606
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Methane Emissions and the Use of
    Suybeng B; Charmley E; Gardiner CP; Malau-Aduli BS; Malau-Aduli AEO
    Animals (Basel); 2019 Aug; 9(8):. PubMed ID: 31404998
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Widespread production of nonmicrobial greenhouse gases in soils.
    Wang B; Lerdau M; He Y
    Glob Chang Biol; 2017 Nov; 23(11):4472-4482. PubMed ID: 28585372
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Estimation of greenhouse gases emission from domestic wastewater in Nepal: A scenario-based analysis applicable for developing countries.
    Shrestha A; Bhattarai TN; Ghimire S; Mainali B; Treichel H; Paudel SR
    Chemosphere; 2022 Aug; 300():134501. PubMed ID: 35395260
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Anesthetic gases and global warming: Potentials, prevention and future of anesthesia.
    Gadani H; Vyas A
    Anesth Essays Res; 2011; 5(1):5-10. PubMed ID: 25885293
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Potential Impact of Climate Change on the Micronutrient-Rich Food Supply.
    Semba RD; Askari S; Gibson S; Bloem MW; Kraemer K
    Adv Nutr; 2022 Feb; 13(1):80-100. PubMed ID: 34607354
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.