These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 38035414)
1. Volatile guest molecule mediated strategy to convert covalent organic framework into nitrogen, sulfur-doped carbon as metal-free oxygen reduction electrocatalysts. Qiu S; Lu S; Hu H; Huang S; Duan F; Zhu H; Fu Q; Fu C; Du M J Colloid Interface Sci; 2024 Mar; 657():114-123. PubMed ID: 38035414 [TBL] [Abstract][Full Text] [Related]
2. Covalent organic framework-derived fluorine, nitrogen dual-doped carbon as metal-free bifunctional oxygen electrocatalysts. Li W; Wang J; Jia C; Chen J; Wen Z; Huang A J Colloid Interface Sci; 2023 Nov; 650(Pt A):275-283. PubMed ID: 37413861 [TBL] [Abstract][Full Text] [Related]
3. Metal-organic framework-derived metal-free highly graphitized nitrogen-doped porous carbon with a hierarchical porous structure as an efficient and stable electrocatalyst for oxygen reduction reaction. Yang L; Xu G; Ban J; Zhang L; Xu G; Lv Y; Jia D J Colloid Interface Sci; 2019 Feb; 535():415-424. PubMed ID: 30317082 [TBL] [Abstract][Full Text] [Related]
4. Metal-Free Thiophene-Sulfur Covalent Organic Frameworks: Precise and Controllable Synthesis of Catalytic Active Sites for Oxygen Reduction. Li D; Li C; Zhang L; Li H; Zhu L; Yang D; Fang Q; Qiu S; Yao X J Am Chem Soc; 2020 May; 142(18):8104-8108. PubMed ID: 32309941 [TBL] [Abstract][Full Text] [Related]
5. Quasi-Three-Dimensional Cyclotriphosphazene-Based Covalent Organic Framework Nanosheet for Efficient Oxygen Reduction. Chang J; Li C; Wang X; Li D; Zhang J; Yu X; Li H; Yao X; Valtchev V; Qiu S; Fang Q Nanomicro Lett; 2023 Jun; 15(1):159. PubMed ID: 37386227 [TBL] [Abstract][Full Text] [Related]
6. Precise Modulation of Carbon Activity Sites in Metal-Free Covalent Organic Frameworks for Enhanced Oxygen Reduction Electrocatalysis. Liu J; Zhao J; Li C; Liu Y; Li D; Li H; Valtchev V; Qiu S; Wang Y; Fang Q Small; 2024 Jan; 20(3):e2305759. PubMed ID: 37700638 [TBL] [Abstract][Full Text] [Related]
7. Heteroatom-doped carbon sheets as metal-free electrocatalysts for promoting the oxygen reduction reaction in Zn-air batteries. Deng Y; Zhang H; Lin Y; Ying Q; Yu F; Yang Y Dalton Trans; 2022 Dec; 51(47):18152-18158. PubMed ID: 36385365 [TBL] [Abstract][Full Text] [Related]
8. A 3D Covalent Organic Framework with In-situ Formed Pd Nanoparticles for Efficient Electrochemical Oxygen Reduction. Feng JD; Zhang WD; Liu Y; Han WK; Zhu RM; Gu ZG Chemistry; 2023 Nov; 29(62):e202302201. PubMed ID: 37565784 [TBL] [Abstract][Full Text] [Related]
9. Cobalt nanoparticles/ nitrogen, sulfur-codoped ultrathin carbon nanotubes derived from metal organic frameworks as high-efficiency electrocatalyst for robust rechargeable zinc-air battery. Yan Q; Sun RM; Wang LP; Feng JJ; Zhang L; Wang AJ J Colloid Interface Sci; 2021 Dec; 603():559-571. PubMed ID: 34216952 [TBL] [Abstract][Full Text] [Related]
10. Construction of Bimetallic-Anchored Two-Dimensional Nanosheets on COF for Rechargeable Zinc-Air Batteries. Kang H; Su B; Lei Z ACS Appl Mater Interfaces; 2024 Apr; 16(13):16261-16270. PubMed ID: 38526992 [TBL] [Abstract][Full Text] [Related]
11. Metal-Organic Frameworks (MOFs) Derived Materials Used in Zn-Air Battery. Song D; Hu C; Gao Z; Yang B; Li Q; Zhan X; Tong X; Tian J Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079218 [TBL] [Abstract][Full Text] [Related]
12. Waste Lithium Ion Battery Evolves into Heteroatom Doped Carbon as Oxygen Reduction Electrocatalyst for Aqueous Al-Air Batteries. Shen Y; Zhang G; Wang R; Shen L; Li Q; Zheng F; Wu Q; Ma Z Chempluschem; 2022 Dec; 87(12):e202200328. PubMed ID: 36524725 [TBL] [Abstract][Full Text] [Related]
13. Iron/iron carbide coupled with S, N co-doped porous carbon as effective oxygen reduction reaction catalyst for microbial fuel cells. Li B; Li Q; Wang X Environ Res; 2023 Jul; 228():115808. PubMed ID: 37011794 [TBL] [Abstract][Full Text] [Related]
14. Enhanced electrocatalytic performance of N-doped carbon xerogels obtained through dual nitrogen doping for the oxygen reduction reaction. Jin H; Luo Y; Zhou L; Xiao Z; Zhang F; Huang P; Liu C RSC Adv; 2022 Apr; 12(21):13440-13447. PubMed ID: 35520134 [TBL] [Abstract][Full Text] [Related]
15. Metal-Free Multi-Heteroatom-Doped Carbon Bifunctional Electrocatalysts Derived from a Covalent Triazine Polymer. Zheng Y; Song H; Chen S; Yu X; Zhu J; Xu J; Zhang KAI; Zhang C; Liu T Small; 2020 Nov; 16(47):e2004342. PubMed ID: 33140583 [TBL] [Abstract][Full Text] [Related]
16. An Ultrastable Bifunctional Electrocatalyst Derived from a Co Li M; Yang Q; Fan L; Dai X; Kang Z; Wang R; Sun D ACS Appl Mater Interfaces; 2023 Aug; 15(33):39448-39460. PubMed ID: 37527438 [TBL] [Abstract][Full Text] [Related]
17. Optimized Enhancement Effect of Sulfur in Fe-N-S Codoped Carbon Nanosheets for Efficient Oxygen Reduction Reaction. Ni B; Chen R; Wu L; Xu X; Shi C; Sun P; Chen T ACS Appl Mater Interfaces; 2020 May; 12(21):23995-24006. PubMed ID: 32329603 [TBL] [Abstract][Full Text] [Related]
18. Construction of three-dimensional cobalt sulfide/multi-heteroatom co-doped porous carbon as an efficient trifunctional electrocatalyst. Zhang J; Cui B; Jiang S; Liu H; Dou M Nanoscale; 2022 Jul; 14(27):9849-9859. PubMed ID: 35772340 [TBL] [Abstract][Full Text] [Related]
19. Template-free construction of hollow mesoporous carbon spheres from a covalent triazine framework for enhanced oxygen electroreduction. Zheng Y; Chen S; Zhang KAI; Guan J; Yu X; Peng W; Song H; Zhu J; Xu J; Fan X; Zhang C; Liu T J Colloid Interface Sci; 2022 Feb; 608(Pt 3):3168-3177. PubMed ID: 34809992 [TBL] [Abstract][Full Text] [Related]
20. Core-Shell Carbon-Based Bifunctional Electrocatalysts Derived from COF@MOF Hybrid for Advanced Rechargeable Zn-Air Batteries. Li W; Wang J; Chen J; Chen K; Wen Z; Huang A Small; 2022 Aug; 18(31):e2202018. PubMed ID: 35808960 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]