These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
103 related articles for article (PubMed ID: 3803582)
1. Mitochondria catalyze the reduction of NAD by reduced methylviologen. Nagata S; Günther H; Bader J; Simon H FEBS Lett; 1987 Jan; 210(1):66-70. PubMed ID: 3803582 [TBL] [Abstract][Full Text] [Related]
2. Saturation kinetics of coenzyme Q in NADH and succinate oxidation in beef heart mitochondria. Estornell E; Fato R; Castelluccio C; Cavazzoni M; Parenti Castelli G; Lenaz G FEBS Lett; 1992 Oct; 311(2):107-9. PubMed ID: 1327877 [TBL] [Abstract][Full Text] [Related]
3. Reverse electron transport effects on NADH formation and metmyoglobin reduction. Belskie KM; Van Buiten CB; Ramanathan R; Mancini RA Meat Sci; 2015 Jul; 105():89-92. PubMed ID: 25828162 [TBL] [Abstract][Full Text] [Related]
4. Generation of superoxide by the mitochondrial Complex I. Grivennikova VG; Vinogradov AD Biochim Biophys Acta; 2006; 1757(5-6):553-61. PubMed ID: 16678117 [TBL] [Abstract][Full Text] [Related]
5. In vivo NADH fluorescence. Ince C; Coremans JM; Bruining HA Adv Exp Med Biol; 1992; 317():277-96. PubMed ID: 1288134 [No Abstract] [Full Text] [Related]
6. [Kinetics of NADH oxidation of NAD+ reduction by mitochondrial complex I]. Avraam R; Kotliar AB Biokhimiia; 1991 Sep; 56(9):1676-87. PubMed ID: 1747428 [TBL] [Abstract][Full Text] [Related]
7. The mechanism of oxidation of reduced nicotinamide dinucleotide phosphate by submitochondrial particles from beef heart. Rydström J; Montelius J; Bäckström D; Ernster L Biochim Biophys Acta; 1978 Mar; 501(3):370-80. PubMed ID: 24468 [TBL] [Abstract][Full Text] [Related]
8. A phospholipid requirement for NADH oxidation in mitochondria. Fleischer S; Casu A; Fleischer B Ital J Biochem; 1977; 26(4):277-96. PubMed ID: 200585 [No Abstract] [Full Text] [Related]
9. Pro- and anti-oxidant activities of the mitochondrial respiratory chain: factors influencing NAD(P)H-induced lipid peroxidation. Glinn MA; Lee CP; Ernster L Biochim Biophys Acta; 1997 Jan; 1318(1-2):246-54. PubMed ID: 9030267 [TBL] [Abstract][Full Text] [Related]
10. [Activation of complex I in the reaction of NADH oxidation and delta mu H+-dependent NAD+ reduction by succinate]. Kotliar AB Biokhimiia; 1990 Feb; 55(2):195-200. PubMed ID: 2111181 [TBL] [Abstract][Full Text] [Related]
12. Bovine mitochondrial oxygen consumption effects on oxymyoglobin in the presence of lactate as a substrate for respiration. Ramanathan R; Mancini RA; Joseph P; Suman SP Meat Sci; 2013 Apr; 93(4):893-7. PubMed ID: 23314615 [TBL] [Abstract][Full Text] [Related]
13. Influence of calcium on NADH and succinate oxidation by rat heart submitochondrial particles. Panov AV; Scaduto RC Arch Biochem Biophys; 1995 Feb; 316(2):815-20. PubMed ID: 7864638 [TBL] [Abstract][Full Text] [Related]
15. A ternary mechanism for NADH oxidation by positively charged electron acceptors, catalyzed at the flavin site in respiratory complex I. Birrell JA; King MS; Hirst J FEBS Lett; 2011 Jul; 585(14):2318-22. PubMed ID: 21664911 [TBL] [Abstract][Full Text] [Related]
16. [Effect of experimental myocardial infarct on the rate of NADH and 3-hydroxybutyrate oxidation in heart mitochondria]. Dzheia PP; Toleikis AI; Prashkiavichius AK Vopr Med Khim; 1980; 26(6):731-5. PubMed ID: 7456403 [TBL] [Abstract][Full Text] [Related]
17. Hysteretic interaction of NADH and Mg2+ with mammalian NADH:CoQ reductase from beef heart. Tushurashvili PR; Dekanosidze NZ; Inasaridze NP; Kekelidze TN; Tsartsidze MA; Lomsadze BA FEBS Lett; 1989 Feb; 244(2):268-70. PubMed ID: 2493393 [TBL] [Abstract][Full Text] [Related]
18. [Control of the alternative pathway of electron transfer in mitochondria of the yeast Candida lipolytica]. Medentsev AG; Akimenko VK Biokhimiia; 1980 Jun; 45(6):1068-74. PubMed ID: 7213846 [TBL] [Abstract][Full Text] [Related]
19. The locus of inhibition of NADH oxidation by benzothiadiazoles in beef heart submitochondrial particles. Ferreira J; Wilkinson C; Gil L Biochem Int; 1986 Mar; 12(3):447-59. PubMed ID: 3707593 [TBL] [Abstract][Full Text] [Related]
20. [Role of planar cobalt chelate complexes as shunting agents in the electron transport chain of mitochondria]. Leĭkin IuN; Novodarova GN; Kolosova EM; Vol'pin ME Biokhimiia; 1979 Jan; 44(1):97-103. PubMed ID: 420881 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]