These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 38036137)

  • 1. Human or climate? Differentiating the anthropogenic and climatic drivers of lake storage changes on spatial perspective via remote sensing data.
    Akbas A
    Sci Total Environ; 2024 Feb; 912():168982. PubMed ID: 38036137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A review on the research progress of lake water volume estimation methods.
    An C; Zhang F; Chan NW; Johnson VC; Shi J
    J Environ Manage; 2022 Jul; 314():115057. PubMed ID: 35452887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Annual precipitation regulates spatial and temporal drivers of lake water clarity.
    Rose KC; Greb SR; Diebel M; Turner MG
    Ecol Appl; 2017 Mar; 27(2):632-643. PubMed ID: 27859882
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Satellite and UAV-based remote sensing for assessing the flooding risk from Tibetan lake expansion and optimizing the village relocation site.
    Cheng J; Song C; Liu K; Fan C; Ke L; Chen T; Zhan P; Yao J
    Sci Total Environ; 2022 Jan; 802():149928. PubMed ID: 34464806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupling reconstruction of atmospheric hydrological profile and dry-up risk prediction in a typical lake basin in arid area of China.
    Wang J; Liu D; Tian S; Ma J; Wang L
    Sci Rep; 2022 Apr; 12(1):6535. PubMed ID: 35443769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Remote sensing estimation of the flood storage capacity of basin-scale lakes and reservoirs at high spatial and temporal resolutions.
    Chen T; Song C; Zhan P; Yao J; Li Y; Zhu J
    Sci Total Environ; 2022 Feb; 807(Pt 1):150772. PubMed ID: 34619207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydroclimate-driven changes in the landscape structure of the terminal lakes and wetlands of the China's Heihe River Basin.
    Xiao S; Xiao H; Peng X; Song X
    Environ Monit Assess; 2015 Jan; 187(1):4091. PubMed ID: 25427825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. What caused the spatial heterogeneity of lake ice phenology changes on the Tibetan Plateau?
    Cai Y; Ke CQ; Xiao Y; Wu J
    Sci Total Environ; 2022 Aug; 836():155517. PubMed ID: 35483456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing spatial resolution of GRACE-derived groundwater storage anomalies in Urmia catchment using machine learning downscaling methods.
    Sabzehee F; Amiri-Simkooei AR; Iran-Pour S; Vishwakarma BD; Kerachian R
    J Environ Manage; 2023 Mar; 330():117180. PubMed ID: 36603260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shrinking lakes of rift valley system in southern Tibet: Is it the climate?
    Liu X; Chen J; Chen J; Jin H
    Sci Total Environ; 2023 Feb; 858(Pt 3):160016. PubMed ID: 36368400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Remote sensing of CDOM and DOC in alpine lakes across the Qinghai-Tibet Plateau using Sentinel-2A imagery data.
    Liu G; Li S; Song K; Wang X; Wen Z; Kutser T; Jacinthe PA; Shang Y; Lyu L; Fang C; Yang Y; Yang Q; Zhang B; Cheng S; Hou J
    J Environ Manage; 2021 May; 286():112231. PubMed ID: 33706125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of lagoon lakes in Kocacay delta by using remote sensing method.
    Irtem E; Sacin Y
    J Environ Biol; 2012 Apr; 33(2 Suppl):487-92. PubMed ID: 23424854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Difference and cause analysis of water storage changes for glacier-fed and non-glacier-fed lakes on the Tibetan Plateau.
    Qiao B; Zhu L
    Sci Total Environ; 2019 Nov; 693():133399. PubMed ID: 31374510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. National framework for ranking lakes by potential for anthropogenic hydro-alteration.
    Fergus CE; Brooks JR; Kaufmann PR; Pollard AI; Herlihy AT; Paulsen SG; Weber MH
    Ecol Indic; 2021 Jan; 122():. PubMed ID: 33897301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Effective Low-Cost Remote Sensing Approach to Reconstruct the Long-Term and Dense Time Series of Area and Storage Variations for Large Lakes.
    Luo S; Song C; Liu K; Ke L; Ma R
    Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31574940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Humic substances-part 7: the biogeochemistry of dissolved organic carbon and its interactions with climate change.
    Porcal P; Koprivnjak JF; Molot LA; Dillon PJ
    Environ Sci Pollut Res Int; 2009 Sep; 16(6):714-26. PubMed ID: 19462191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regional versus local drivers of water quality in the Windermere catchment, Lake District, United Kingdom: The dominant influence of wastewater pollution over the past 200 years.
    Moorhouse HL; McGowan S; Taranu ZE; Gregory-Eaves I; Leavitt PR; Jones MD; Barker P; Brayshaw SA
    Glob Chang Biol; 2018 Sep; 24(9):4009-4022. PubMed ID: 29749028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lake dynamics in Tibetan Plateau during 1990-2020 and exploratory factor analyses using Google Earth Engine.
    Li Z; Deng F; Gong J; Xiang L; Han Y; Zheng P; Zhao E
    Environ Sci Pollut Res Int; 2023 Mar; 30(14):41609-41622. PubMed ID: 36635472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sources and transformations of nitrate in Qixiangcuo Lake and its inflow rivers in the northern Tibetan Plateau.
    Shang Y; Wang F; Sun S; Zhu B; Wang P
    Environ Sci Pollut Res Int; 2023 Jan; 30(2):4245-4257. PubMed ID: 35965301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Primary Productivity and Precipitation-Use Efficiency in Temperate Grassland in the Loess Plateau of China.
    Jia X; Xie B; Shao M; Zhao C
    PLoS One; 2015; 10(8):e0135490. PubMed ID: 26295954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.