These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 38036202)
1. Groundwater potential delineation using geodetector based convolutional neural network in the Gunabay watershed of Ethiopia. Tegegne AM; Lohani TK; Eshete AA Environ Res; 2024 Feb; 242():117790. PubMed ID: 38036202 [TBL] [Abstract][Full Text] [Related]
2. Proxy modeling approach to evaluate groundwater recharge potentiality zones in the data scarce area of upper Blue Nile Basin, Ethiopia. Tegegne AM; Lohani TK; Eshete AA Environ Monit Assess; 2023 May; 195(6):726. PubMed ID: 37227530 [TBL] [Abstract][Full Text] [Related]
3. Potential risk assessment due to groundwater quality deterioration and quantifying the major influencing factors using geographical detectors in the Gunabay watershed of Ethiopia. Tegegne AM; Lohani TK; Eshete AA Environ Monit Assess; 2023 May; 195(6):753. PubMed ID: 37247114 [TBL] [Abstract][Full Text] [Related]
4. Integration of hydrogeological data, GIS and AHP techniques applied to delineate groundwater potential zones in sandstone, limestone and shales rocks of the Damoh district, (MP) central India. Moharir KN; Pande CB; Gautam VK; Singh SK; Rane NL Environ Res; 2023 Jul; 228():115832. PubMed ID: 37054834 [TBL] [Abstract][Full Text] [Related]
5. GIS-based multi-criteria decision-making techniques and analytical hierarchical process for delineation of groundwater potential. Farhat B; Souissi D; Mahfoudhi R; Chrigui R; Sebei A; Ben Mammou A Environ Monit Assess; 2023 Jan; 195(2):285. PubMed ID: 36625986 [TBL] [Abstract][Full Text] [Related]
6. Integrated assessment of groundwater potential zones and artificial recharge sites using GIS and Fuzzy-AHP: a case study in Peddavagu watershed, India. Shekar PR; Mathew A Environ Monit Assess; 2023 Jun; 195(7):906. PubMed ID: 37382701 [TBL] [Abstract][Full Text] [Related]
7. Groundwater potential assessment in the Blue Nile River catchment, Ethiopia, using geospatial and multi-criteria decision-making techniques. Tamesgen Y; Atlabachew A; Jothimani M Heliyon; 2023 Jun; 9(6):e17616. PubMed ID: 37408881 [TBL] [Abstract][Full Text] [Related]
8. Delineation of groundwater potential zones at micro-spatial units of Nagaon district in Assam, India, using GIS-based MCDA and AHP techniques. Bhuyan MJ; Deka N Environ Sci Pollut Res Int; 2024 Sep; 31(41):54107-54128. PubMed ID: 36504300 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of groundwater quality for drinking and irrigation purposes using proxy indices in the Gunabay watershed, Upper Blue Nile Basin, Ethiopia. Tegegne AM; Lohani TK; Eshete AA Heliyon; 2023 Apr; 9(4):e15263. PubMed ID: 37151705 [TBL] [Abstract][Full Text] [Related]
10. Assessment of influencing level of rainfall and physical factors on groundwater level for a semi-arid flat terrain watershed using grid-based geospatial analysis: a case study from Lower Palar Basin, Tamil Nadu, India. Nagaraj S; Purushothaman P Environ Monit Assess; 2023 Sep; 195(10):1159. PubMed ID: 37673825 [TBL] [Abstract][Full Text] [Related]
11. Application of deep neural network to capture groundwater potential zone in mountainous terrain, Nepal Himalaya. Pradhan AMS; Kim YT; Shrestha S; Huynh TC; Nguyen BP Environ Sci Pollut Res Int; 2021 Apr; 28(15):18501-18517. PubMed ID: 32875448 [TBL] [Abstract][Full Text] [Related]
12. Groundwater salinity in the Horn of Africa: Spatial prediction modeling and estimated people at risk. Araya D; Podgorski J; Berg M Environ Int; 2023 Jun; 176():107925. PubMed ID: 37209488 [TBL] [Abstract][Full Text] [Related]
13. Groundwater Potential Zone Mapping Using Analytical Hierarchy Process and GIS in Muga Watershed, Abay Basin, Ethiopia. Melese T; Belay T Glob Chall; 2022 Jan; 6(1):2100068. PubMed ID: 35024167 [TBL] [Abstract][Full Text] [Related]
14. Mapping of groundwater potential zones in Salem Chalk Hills, Tamil Nadu, India, using remote sensing and GIS techniques. Thilagavathi N; Subramani T; Suresh M; Karunanidhi D Environ Monit Assess; 2015 Apr; 187(4):164. PubMed ID: 25740689 [TBL] [Abstract][Full Text] [Related]
15. Groundwater recharge estimation using WetSpass-M and MTBS leveraging from HydroOffice and WHAT tools for baseflow in Weyib watershed, Ethiopia. Aredo MR; Lohani TK; Mohammed AK Environ Monit Assess; 2024 May; 196(6):532. PubMed ID: 38727964 [TBL] [Abstract][Full Text] [Related]
16. Artificial groundwater recharge zones mapping using remote sensing and GIS: a case study in Indian Punjab. Singh A; Panda SN; Kumar KS; Sharma CS Environ Manage; 2013 Jul; 52(1):61-71. PubMed ID: 23775493 [TBL] [Abstract][Full Text] [Related]
17. Geospatial application on mapping groundwater recharge zones in Makutupora basin, Tanzania. Kisiki CP; Bekele TW; Ayenew T; Mjemah IC Heliyon; 2022 Oct; 8(10):e10760. PubMed ID: 36211994 [TBL] [Abstract][Full Text] [Related]
18. Integrating geospatial and ground geophysical information as guidelines for groundwater potential zones in hard rock terrains of south India. Rashid M; Lone MA; Ahmed S Environ Monit Assess; 2012 Aug; 184(8):4829-39. PubMed ID: 21901310 [TBL] [Abstract][Full Text] [Related]
19. Delineation of groundwater potential zonation using geoinformatics and AHP techniques with remote sensing data. Diriba D; Karuppannan S; Takele T; Husein M Heliyon; 2024 Feb; 10(3):e25532. PubMed ID: 38371977 [TBL] [Abstract][Full Text] [Related]
20. Using machine learning algorithms to map the groundwater recharge potential zones. Pourghasemi HR; Sadhasivam N; Yousefi S; Tavangar S; Ghaffari Nazarlou H; Santosh M J Environ Manage; 2020 Jul; 265():110525. PubMed ID: 32275245 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]