These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 38036283)

  • 1. Configuration-mediated excited-state energy dissipation in metal-bridged dimeric D-A fluorophores for enhanced photothermal therapy.
    Lv S; Wang B; Wu Y; Zhang R; Feng E; Liu T; Xie X; Jiang J; Hou X; Liu D; Song F
    Acta Biomater; 2024 Jan; 174():400-411. PubMed ID: 38036283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly stable organic photothermal agent based on near-infrared-II fluorophores for tumor treatment.
    Xu Y; Wang S; Chen Z; Hu R; Li S; Zhao Y; Liu L; Qu J
    J Nanobiotechnology; 2021 Feb; 19(1):37. PubMed ID: 33541369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photothermal agents based on small organic fluorophores with intramolecular motion.
    Lv F; Fan X; Liu D; Song F
    Acta Biomater; 2022 Sep; 149():16-29. PubMed ID: 35817339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acceptor-donor-acceptor type organic photothermal agents with enhanced NIR absorption and photothermal conversion effect for cancer photothermal therapy.
    Sun M; Zhao X; Cao X; Li X; Xu J; Meng X; Lu H; Zhao X
    Talanta; 2024 Jul; 274():125991. PubMed ID: 38547836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Upconversion NIR-II fluorophores for mitochondria-targeted cancer imaging and photothermal therapy.
    Zhou H; Zeng X; Li A; Zhou W; Tang L; Hu W; Fan Q; Meng X; Deng H; Duan L; Li Y; Deng Z; Hong X; Xiao Y
    Nat Commun; 2020 Dec; 11(1):6183. PubMed ID: 33273452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorination Enhances NIR-II Emission and Photothermal Conversion Efficiency of Phototheranostic Agents for Imaging-Guided Cancer Therapy.
    Li C; Jiang G; Yu J; Ji W; Liu L; Zhang P; Du J; Zhan C; Wang J; Tang BZ
    Adv Mater; 2023 Jan; 35(3):e2208229. PubMed ID: 36300808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NIR Light-Driving Barrier-Free Group Rotation in Nanoparticles with an 88.3% Photothermal Conversion Efficiency for Photothermal Therapy.
    Xi D; Xiao M; Cao J; Zhao L; Xu N; Long S; Fan J; Shao K; Sun W; Yan X; Peng X
    Adv Mater; 2020 Mar; 32(11):e1907855. PubMed ID: 32022978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Near-Infrared Conjugated Polymers Containing Thermally Activated Delayed Fluorescence Units Enable Enhanced Photothermal Therapy.
    Xu Y; Chen B; Su D; Li J; Qi Q; Hu Y; Wang Q; Xia F; Lou X; Zhao Z; Dai J; Dong X; Zhou J
    ACS Appl Mater Interfaces; 2023 Dec; 15(48):56314-56327. PubMed ID: 37983087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. POSS engineering of squaraine nanoparticle with high photothermal conversion efficiency for photothermal therapy.
    Gu Z; Tian X; Guang S; Wei G; Mao Y; Xu H
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Feb; 306():123576. PubMed ID: 37922849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unprecedented Improvement of Near-Infrared Photothermal Conversion Efficiency to 87.2% by Ultrafast Non-radiative Decay of Excited States of Self-Assembly Cocrystal.
    Chen W; Sun S; Huang G; Ni S; Xu L; Dang L; Phillips DL; Li MD
    J Phys Chem Lett; 2021 Jun; 12(24):5796-5801. PubMed ID: 34137613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanococktail Based on AIEgens and Semiconducting Polymers: A Single Laser Excited Image-Guided Dual Photothermal Therapy.
    Long Z; Dai J; Hu Q; Wang Q; Zhen S; Zhao Z; Liu Z; Hu JJ; Lou X; Xia F
    Theranostics; 2020; 10(5):2260-2272. PubMed ID: 32104506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unique Double Intramolecular and Intermolecular Exciton Coupling in Ethene-Bridged aza-BODIPY Dimers for High-Efficiency Near-Infrared Photothermal Conversion and Therapy.
    Guo X; Yang J; Li M; Zhang F; Bu W; Li H; Wu Q; Yin D; Jiao L; Hao E
    Angew Chem Int Ed Engl; 2022 Nov; 61(44):e202211081. PubMed ID: 36098497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coupling molecular rigidity and flexibility on fused backbones for NIR-II photothermal conversion.
    He Y; Liao H; Lyu S; Xu XQ; Li Z; McCulloch I; Yue W; Wang Y
    Chem Sci; 2021 Feb; 12(14):5177-5184. PubMed ID: 34163755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acceptor-donor-acceptor-type molecules with large electrostatic potential difference for effective NIR photothermal therapy.
    Fan K; Zhang L; Zhong Q; Xiang Y; Xu B; Wang Y
    J Mater Chem B; 2024 May; 12(21):5140-5149. PubMed ID: 38712564
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Supramolecular Strategy to Engineering a Non-photobleaching and Near-Infrared Absorbing Nano-J-Aggregate for Efficient Photothermal Therapy.
    Su M; Han Q; Yan X; Liu Y; Luo P; Zhai W; Zhang Q; Li L; Li C
    ACS Nano; 2021 Mar; 15(3):5032-5042. PubMed ID: 33635051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Donor-acceptor-donor small molecules for fluorescence/photoacoustic imaging and integrated photothermal therapy.
    Wang C; Wang F; Zou W; Miao Y; Zhu Y; Cao M; Yu B; Cong H; Shen Y
    Acta Biomater; 2023 Jul; 164():588-603. PubMed ID: 37086828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Revealing and Tuning the Photophysics of C=N Containing Photothermal Molecules: Excited State Dynamics Simulations.
    Chen S; Zhang H; Li Y; Chen T; Liu H; Han X
    Int J Mol Sci; 2022 Oct; 23(19):. PubMed ID: 36233082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synchronously Manipulating Absorption and Extinction Coefficient of Semiconducting Polymers via Precise Dual-Acceptor Engineering for NIR-II Excited Photothermal Theranostics.
    Li J; Kang M; Zhang Z; Li X; Xu W; Wang D; Gao X; Tang BZ
    Angew Chem Int Ed Engl; 2023 May; 62(20):e202301617. PubMed ID: 36929068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radiative decay engineering: biophysical and biomedical applications.
    Lakowicz JR
    Anal Biochem; 2001 Nov; 298(1):1-24. PubMed ID: 11673890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acceptor Engineering Produces Ultrafast Nonradiative Decay in NIR-II Aza-BODIPY Nanoparticles for Efficient Osteosarcoma Photothermal Therapy via Concurrent Apoptosis and Pyroptosis.
    Shi Z; Bai H; Wu J; Miao X; Gao J; Xu X; Liu Y; Jiang J; Yang J; Zhang J; Shao T; Peng B; Ma H; Zhu D; Chen G; Hu W; Li L; Huang W
    Research (Wash D C); 2023; 6():0169. PubMed ID: 37342631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.