These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38036466)

  • 21. Lignin Biopolymers in the Age of Controlled Polymerization.
    Ganewatta MS; Lokupitiya HN; Tang C
    Polymers (Basel); 2019 Jul; 11(7):. PubMed ID: 31336845
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lignins as Promising Renewable Biopolymers and Bioactive Compounds for High-Performance Materials.
    Vasile C; Baican M
    Polymers (Basel); 2023 Jul; 15(15):. PubMed ID: 37571069
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lignin-based composites with enhanced mechanical properties by acetone fractionation and epoxidation modification.
    Zou SL; Xiao LP; Li XY; Yin WZ; Sun RC
    iScience; 2023 Mar; 26(3):106187. PubMed ID: 36879809
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A comprehensive review on chemical properties and applications of biopolymers and their composites.
    George A; Sanjay MR; Srisuk R; Parameswaranpillai J; Siengchin S
    Int J Biol Macromol; 2020 Jul; 154():329-338. PubMed ID: 32179114
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lignin-Based Micro- and Nanomaterials and their Composites in Biomedical Applications.
    Liu R; Dai L; Xu C; Wang K; Zheng C; Si C
    ChemSusChem; 2020 Sep; 13(17):4266-4283. PubMed ID: 32462781
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of the aerobic biodegradation of biopolymers and the corresponding bioplastics: A review.
    Polman EMN; Gruter GM; Parsons JR; Tietema A
    Sci Total Environ; 2021 Jan; 753():141953. PubMed ID: 32896737
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recent advances in lignin-based carbon materials and their applications: A review.
    Yao M; Bi X; Wang Z; Yu P; Dufresne A; Jiang C
    Int J Biol Macromol; 2022 Dec; 223(Pt A):980-1014. PubMed ID: 36375669
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Short Carbon Fiber Reinforced Polymers: Utilizing Lignin to Engineer Potentially Sustainable Resource-Based Biocomposites.
    Szabó L; Milotskyi R; Fujie T; Tsukegi T; Wada N; Ninomiya K; Takahashi K
    Front Chem; 2019; 7():757. PubMed ID: 31781540
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A review on Borassus flabellifer lignocellulose fiber reinforced polymer composites.
    Singh JK; Rout AK; Kumari K
    Carbohydr Polym; 2021 Jun; 262():117929. PubMed ID: 33838807
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 3D printing of lignin: Challenges, opportunities and roads onward.
    Ebers LS; Arya A; Bowland CC; Glasser WG; Chmely SC; Naskar AK; Laborie MP
    Biopolymers; 2021 Jun; 112(6):e23431. PubMed ID: 33974275
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular self-organization of wood lignin-carbohydrate matrix.
    Bogolitsyn KG; Gusakova MA; Krasikova AA
    Planta; 2021 Jul; 254(2):30. PubMed ID: 34272608
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermoset phenolic matrices reinforced with unmodified and surface-grafted furfuryl alcohol sugar cane bagasse and curaua fibers: properties of fibers and composites.
    Trindade WG; Hoareau W; Megiatto JD; Razera IA; Castellan A; Frollini E
    Biomacromolecules; 2005; 6(5):2485-96. PubMed ID: 16153084
    [TBL] [Abstract][Full Text] [Related]  

  • 33. From Waste to Value: Recent Insights into Producing Vanillin from Lignin.
    D'Arrigo P; Rossato LAM; Strini A; Serra S
    Molecules; 2024 Jan; 29(2):. PubMed ID: 38257355
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Present Status and Future Prospects of Jute in Nanotechnology: A Review.
    Shah SS; Shaikh MN; Khan MY; Alfasane MA; Rahman MM; Aziz MA
    Chem Rec; 2021 Jul; 21(7):1631-1665. PubMed ID: 34132038
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Challenges of the utilization of wood polymers: how can they be overcome?
    Pu Y; Kosa M; Kalluri UC; Tuskan GA; Ragauskas AJ
    Appl Microbiol Biotechnol; 2011 Sep; 91(6):1525-36. PubMed ID: 21796383
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chemical and Physical Modification of Lignin for Green Polymeric Composite Materials.
    Komisarz K; Majka TM; Pielichowski K
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614353
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lignin derivatives-based hydrogels for biomedical applications.
    Khadem E; Ghafarzadeh M; Kharaziha M; Sun F; Zhang X
    Int J Biol Macromol; 2024 Mar; 261(Pt 2):129877. PubMed ID: 38307436
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hydrothermal method-assisted synthesis of self-crosslinked all-lignin-based hydrogels.
    Lv Z; Zheng Y; Zhou H; Pan Z; Li C; Dai L; Zhang M; Si C
    Int J Biol Macromol; 2022 Sep; 216():670-675. PubMed ID: 35817238
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Porous graphitic biocarbon and reclaimed carbon fiber derived environmentally benign lightweight composites.
    Gezahegn S; Lai R; Huang L; Chen L; Huang F; Blozowski N; Thomas SC; Sain M; Tjong J; Jaffer S; Behravesh A; Weimin Y
    Sci Total Environ; 2019 May; 664():363-373. PubMed ID: 30743128
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Preparation of lignin-based hydrogels, their properties and applications.
    Mondal AK; Uddin MT; Sujan SMA; Tang Z; Alemu D; Begum HA; Li J; Huang F; Ni Y
    Int J Biol Macromol; 2023 Aug; 245():125580. PubMed ID: 37379941
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.