These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38036668)

  • 1. Experimental investigation of laminar and turbulent displacement of residual oil film.
    Zhang Y; Barrouillet B; Skadsem HJ
    Sci Rep; 2023 Nov; 13(1):21120. PubMed ID: 38036668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a novel experimental technique for the measurement of residual wall layer thickness in water-oil displacement flows.
    Zhang Y; Barrouillet B; Chavan SM; Skadsem HJ
    Sci Rep; 2023 Mar; 13(1):4530. PubMed ID: 36941330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laminar, turbulent, and inertial shear-thickening regimes in channel flow of neutrally buoyant particle suspensions.
    Lashgari I; Picano F; Breugem WP; Brandt L
    Phys Rev Lett; 2014 Dec; 113(25):254502. PubMed ID: 25554885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Speed-resolution advantage of turbulent supercritical fluid chromatography in open tubular columns: II - Theoretical and experimental evidences.
    Gritti F; Fogwill M
    J Chromatogr A; 2017 Jun; 1501():142-150. PubMed ID: 28434714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finite lifetime of turbulence in shear flows.
    Hof B; Westerweel J; Schneider TM; Eckhardt B
    Nature; 2006 Sep; 443(7107):59-62. PubMed ID: 16957725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Displacement Mechanisms of Residual Oil Film in 2D Microchannels.
    Fan J; Liu L; Ni S; Zhao J
    ACS Omega; 2021 Feb; 6(6):4155-4160. PubMed ID: 33644538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nature of laminar-turbulence intermittency in shear flows.
    Avila M; Hof B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):063012. PubMed ID: 23848777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The onset of turbulence in pipe flow.
    Avila K; Moxey D; de Lozar A; Avila M; Barkley D; Hof B
    Science; 2011 Jul; 333(6039):192-6. PubMed ID: 21737736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laminar-to-turbulence and relaminarization zones detection by simulation of low Reynolds number turbulent blood flow in large stenosed arteries.
    Tabe R; Ghalichi F; Hossainpour S; Ghasemzadeh K
    Biomed Mater Eng; 2016 Aug; 27(2-3):119-29. PubMed ID: 27567769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extremely rare collapse and build-up of turbulence in stochastic models of transitional wall flows.
    Rolland J
    Phys Rev E; 2018 Feb; 97(2-1):023109. PubMed ID: 29548159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinct large-scale turbulent-laminar states in transitional pipe flow.
    Moxey D; Barkley D
    Proc Natl Acad Sci U S A; 2010 May; 107(18):8091-6. PubMed ID: 20404193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visually Based Characterization of the Incipient Particle Motion in Regular Substrates: From Laminar to Turbulent Conditions.
    Agudo JR; Han J; Park J; Kwon S; Loekman S; Luzi G; Linderberger C; Delgado A; Wierschem A
    J Vis Exp; 2018 Feb; (132):. PubMed ID: 29553536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of hemolysis in turbulent shear orifice flow.
    Tamagawa M; Akamatsu T; Saitoh K
    Artif Organs; 1996 Jun; 20(6):553-9. PubMed ID: 8817954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the Similarity of Pulsating and Accelerating Turbulent Pipe Flows.
    Sundstrom LRJ; Cervantes MJ
    Flow Turbul Combust; 2018; 100(2):417-436. PubMed ID: 30069140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dispersion in pre-turbulent and sustained turbulent flow of carbon dioxide.
    Gritti F; Fogwill M
    J Chromatogr A; 2018 Aug; 1564():176-187. PubMed ID: 29891403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficiency of laminar and turbulent mixing in wall-bounded flows.
    Kadoch B; Bos WJT; Schneider K
    Phys Rev E; 2020 Apr; 101(4-1):043104. PubMed ID: 32422802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of Hemolysis in Turbulent Shear Orifice Flow.
    Tamagawa M; Akamatsu T; Saitoh K
    Artif Organs; 1996 May; 20(5):553-559. PubMed ID: 28868711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laws of Resistance in Transitional Pipe Flows.
    Cerbus RT; Liu CC; Gioia G; Chakraborty P
    Phys Rev Lett; 2018 Feb; 120(5):054502. PubMed ID: 29481155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of an Intermittency Model for Laminar, Transitional, and Turbulent Internal Flows.
    Abraham JP; Sparrow EM; Gorman JM; Zhao Y; Minkowycz WJ
    J Fluids Eng; 2019 Jul; 141(7):0712041-712048. PubMed ID: 33437104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large-Eddy Simulations of Flow in the FDA Benchmark Nozzle Geometry to Predict Hemolysis.
    Tobin N; Manning KB
    Cardiovasc Eng Technol; 2020 Jun; 11(3):254-267. PubMed ID: 32297154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.