BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 38036744)

  • 1. Decoding motor plans using a closed-loop ultrasonic brain-machine interface.
    Griggs WS; Norman SL; Deffieux T; Segura F; Osmanski BF; Chau G; Christopoulos V; Liu C; Tanter M; Shapiro MG; Andersen RA
    Nat Neurosci; 2024 Jan; 27(1):196-207. PubMed ID: 38036744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-trial decoding of movement intentions using functional ultrasound neuroimaging.
    Norman SL; Maresca D; Christopoulos VN; Griggs WS; Demene C; Tanter M; Shapiro MG; Andersen RA
    Neuron; 2021 May; 109(9):1554-1566.e4. PubMed ID: 33756104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive decoding using local field potentials in a brain-machine interface.
    Rosa So ; Libedinsky C; Kai Keng Ang ; Wee Chiek Clement Lim ; Kyaw Kyar Toe ; Cuntai Guan
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5721-5724. PubMed ID: 28269554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decoding continuous limb movements from high-density epidural electrode arrays using custom spatial filters.
    Marathe AR; Taylor DM
    J Neural Eng; 2013 Jun; 10(3):036015. PubMed ID: 23611833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long term, stable brain machine interface performance using local field potentials and multiunit spikes.
    Flint RD; Wright ZA; Scheid MR; Slutzky MW
    J Neural Eng; 2013 Oct; 10(5):056005. PubMed ID: 23918061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A high performing brain-machine interface driven by low-frequency local field potentials alone and together with spikes.
    Stavisky SD; Kao JC; Nuyujukian P; Ryu SI; Shenoy KV
    J Neural Eng; 2015 Jun; 12(3):036009. PubMed ID: 25946198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive decoding for brain-machine interfaces through Bayesian parameter updates.
    Li Z; O'Doherty JE; Lebedev MA; Nicolelis MA
    Neural Comput; 2011 Dec; 23(12):3162-204. PubMed ID: 21919788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unsupervised Neural Manifold Alignment for Stable Decoding of Movement from Cortical Signals.
    Ganjali M; Mehridehnavi A; Rakhshani S; Khorasani A
    Int J Neural Syst; 2024 Jan; 34(1):2450006. PubMed ID: 38063378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brain-machine interface cursor position only weakly affects monkey and human motor cortical activity in the absence of arm movements.
    Stavisky SD; Kao JC; Nuyujukian P; Pandarinath C; Blabe C; Ryu SI; Hochberg LR; Henderson JM; Shenoy KV
    Sci Rep; 2018 Nov; 8(1):16357. PubMed ID: 30397281
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of a biomimetic brain machine interface with local field potentials: performance and stability of a static decoder over 200 days.
    Flint RD; Wright ZA; Slutzky MW
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():6719-22. PubMed ID: 23367471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cortical Control of Virtual Self-Motion Using Task-Specific Subspaces.
    Schroeder KE; Perkins SM; Wang Q; Churchland MM
    J Neurosci; 2022 Jan; 42(2):220-239. PubMed ID: 34716229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rhesus monkeys learn to control a directional-key inspired brain machine interface via bio-feedback.
    Zhang C; Wang H; Tang S; Li Z
    PLoS One; 2024; 19(1):e0286742. PubMed ID: 38232123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Error detection and correction in intracortical brain-machine interfaces controlling two finger groups.
    Wallace DM; Benyamini M; Nason-Tomaszewski SR; Costello JT; Cubillos LH; Mender MJ; Temmar H; Willsey MS; Patil PG; Chestek CA; Zacksenhouse M
    J Neural Eng; 2023 Aug; 20(4):. PubMed ID: 37567222
    [No Abstract]   [Full Text] [Related]  

  • 14. Leveraging neural dynamics to extend functional lifetime of brain-machine interfaces.
    Kao JC; Ryu SI; Shenoy KV
    Sci Rep; 2017 Aug; 7(1):7395. PubMed ID: 28784984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing gesture decoding performance using signals from posterior parietal cortex: a stereo-electroencephalograhy (SEEG) study.
    Wang M; Li G; Jiang S; Wei Z; Hu J; Chen L; Zhang D
    J Neural Eng; 2020 Sep; 17(4):046043. PubMed ID: 32498049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybrid decoding of both spikes and low-frequency local field potentials for brain-machine interfaces.
    Stavisky SD; Kao JC; Nuyujukian P; Ryu SI; Shenoy KV
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3041-4. PubMed ID: 25570632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decoder calibration with ultra small current sample set for intracortical brain-machine interface.
    Zhang P; Ma X; Chen L; Zhou J; Wang C; Li W; He J
    J Neural Eng; 2018 Apr; 15(2):026019. PubMed ID: 29343650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving brain-machine interface performance by decoding intended future movements.
    Willett FR; Suminski AJ; Fagg AH; Hatsopoulos NG
    J Neural Eng; 2013 Apr; 10(2):026011. PubMed ID: 23428966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decoding Movements from Cortical Ensemble Activity Using a Long Short-Term Memory Recurrent Network.
    Tseng PH; Urpi NA; Lebedev M; Nicolelis M
    Neural Comput; 2019 Jun; 31(6):1085-1113. PubMed ID: 30979355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A brain-spine interface alleviating gait deficits after spinal cord injury in primates.
    Capogrosso M; Milekovic T; Borton D; Wagner F; Moraud EM; Mignardot JB; Buse N; Gandar J; Barraud Q; Xing D; Rey E; Duis S; Jianzhong Y; Ko WK; Li Q; Detemple P; Denison T; Micera S; Bezard E; Bloch J; Courtine G
    Nature; 2016 Nov; 539(7628):284-288. PubMed ID: 27830790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.