These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 38036744)

  • 21. A brain-machine interface enables bimanual arm movements in monkeys.
    Ifft PJ; Shokur S; Li Z; Lebedev MA; Nicolelis MA
    Sci Transl Med; 2013 Nov; 5(210):210ra154. PubMed ID: 24197735
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Robust tactile sensory responses in finger area of primate motor cortex relevant to prosthetic control.
    Schroeder KE; Irwin ZT; Bullard AJ; Thompson DE; Bentley JN; Stacey WC; Patil PG; Chestek CA
    J Neural Eng; 2017 Aug; 14(4):046016. PubMed ID: 28504971
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Training in Use of Brain-Machine Interface-Controlled Robotic Hand Improves Accuracy Decoding Two Types of Hand Movements.
    Fukuma R; Yanagisawa T; Yokoi H; Hirata M; Yoshimine T; Saitoh Y; Kamitani Y; Kishima H
    Front Neurosci; 2018; 12():478. PubMed ID: 30050405
    [No Abstract]   [Full Text] [Related]  

  • 24. Brain-machine interface (BMI) in paralysis.
    Chaudhary U; Birbaumer N; Curado MR
    Ann Phys Rehabil Med; 2015 Feb; 58(1):9-13. PubMed ID: 25623294
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Subject-specific modulation of local field potential spectral power during brain-machine interface control in primates.
    So K; Dangi S; Orsborn AL; Gastpar MC; Carmena JM
    J Neural Eng; 2014 Apr; 11(2):026002. PubMed ID: 24503623
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Restoring continuous finger function with temporarily paralyzed nonhuman primates using brain-machine interfaces.
    Nason-Tomaszewski SR; Mender MJ; Kennedy E; Lambrecht JM; Kilgore KL; Chiravuri S; Ganesh Kumar N; Kung TA; Willsey MS; Chestek CA; Patil PG
    J Neural Eng; 2023 May; 20(3):. PubMed ID: 37084719
    [No Abstract]   [Full Text] [Related]  

  • 27. Motor cortical control of movement speed with implications for brain-machine interface control.
    Golub MD; Yu BM; Schwartz AB; Chase SM
    J Neurophysiol; 2014 Jul; 112(2):411-29. PubMed ID: 24717350
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The impact of task context on predicting finger movements in a brain-machine interface.
    Mender MJ; Nason-Tomaszewski SR; Temmar H; Costello JT; Wallace DM; Willsey MS; Ganesh Kumar N; Kung TA; Patil P; Chestek CA
    Elife; 2023 Jun; 12():. PubMed ID: 37284744
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improved prediction of bimanual movements by a two-staged (effector-then-trajectory) decoder with epidural ECoG in nonhuman primates.
    Choi H; Lee J; Park J; Lee S; Ahn KH; Kim IY; Lee KM; Jang DP
    J Neural Eng; 2018 Feb; 15(1):016011. PubMed ID: 28875947
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A freely-moving monkey treadmill model.
    Foster JD; Nuyujukian P; Freifeld O; Gao H; Walker R; I Ryu S; H Meng T; Murmann B; J Black M; Shenoy KV
    J Neural Eng; 2014 Aug; 11(4):046020. PubMed ID: 24995476
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Brain-machine interfaces from motor to mood.
    Shanechi MM
    Nat Neurosci; 2019 Oct; 22(10):1554-1564. PubMed ID: 31551595
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of a closed-loop feedback system for real-time control of a high-dimensional Brain Machine Interface.
    Putrino D; Wong YT; Vigeral M; Pesaran B
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4567-70. PubMed ID: 23366944
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Designing dynamical properties of brain-machine interfaces to optimize task-specific performance.
    Gowda S; Orsborn AL; Overduin SA; Moorman HG; Carmena JM
    IEEE Trans Neural Syst Rehabil Eng; 2014 Sep; 22(5):911-20. PubMed ID: 24760941
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Control of Redundant Kinematic Degrees of Freedom in a Closed-Loop Brain-Machine Interface.
    Moorman HG; Gowda S; Carmena JM
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):750-760. PubMed ID: 27455526
    [TBL] [Abstract][Full Text] [Related]  

  • 35. State-based decoding of hand and finger kinematics using neuronal ensemble and LFP activity during dexterous reach-to-grasp movements.
    Aggarwal V; Mollazadeh M; Davidson AG; Schieber MH; Thakor NV
    J Neurophysiol; 2013 Jun; 109(12):3067-81. PubMed ID: 23536714
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Parsing learning in networks using brain-machine interfaces.
    Orsborn AL; Pesaran B
    Curr Opin Neurobiol; 2017 Oct; 46():76-83. PubMed ID: 28843838
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Brain-machine interfaces in neurorehabilitation of stroke.
    Soekadar SR; Birbaumer N; Slutzky MW; Cohen LG
    Neurobiol Dis; 2015 Nov; 83():172-9. PubMed ID: 25489973
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Invasive Brain Machine Interface System.
    Jin Y; Chen J; Zhang S; Chen W; Zheng X
    Adv Exp Med Biol; 2019; 1101():67-89. PubMed ID: 31729672
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Parietal neural prosthetic control of a computer cursor in a graphical-user-interface task.
    Revechkis B; Aflalo TN; Kellis S; Pouratian N; Andersen RA
    J Neural Eng; 2014 Dec; 11(6):066014. PubMed ID: 25394419
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Auto-deleting brain machine interface: Error detection using spiking neural activity in the motor cortex.
    Even-Chen N; Stavisky SD; Kao JC; Ryu SI; Shenoy KV
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():71-5. PubMed ID: 26736203
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.