These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 38036855)

  • 1. Improved green and red GRAB sensors for monitoring dopaminergic activity in vivo.
    Zhuo Y; Luo B; Yi X; Dong H; Miao X; Wan J; Williams JT; Campbell MG; Cai R; Qian T; Li F; Weber SJ; Wang L; Li B; Wei Y; Li G; Wang H; Zheng Y; Zhao Y; Wolf ME; Zhu Y; Watabe-Uchida M; Li Y
    Nat Methods; 2024 Apr; 21(4):680-691. PubMed ID: 38036855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved dual-color GRAB sensors for monitoring dopaminergic activity
    Zhuo Y; Luo B; Yi X; Dong H; Wan J; Cai R; Williams JT; Qian T; Campbell MG; Miao X; Li B; Wei Y; Li G; Wang H; Zheng Y; Watabe-Uchida M; Li Y
    bioRxiv; 2023 Aug; ():. PubMed ID: 37662187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Next-generation GRAB sensors for monitoring dopaminergic activity in vivo.
    Sun F; Zhou J; Dai B; Qian T; Zeng J; Li X; Zhuo Y; Zhang Y; Wang Y; Qian C; Tan K; Feng J; Dong H; Lin D; Cui G; Li Y
    Nat Methods; 2020 Nov; 17(11):1156-1166. PubMed ID: 33087905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Genetically Encoded Fluorescent Sensor Enables Rapid and Specific Detection of Dopamine in Flies, Fish, and Mice.
    Sun F; Zeng J; Jing M; Zhou J; Feng J; Owen SF; Luo Y; Li F; Wang H; Yamaguchi T; Yong Z; Gao Y; Peng W; Wang L; Zhang S; Du J; Lin D; Xu M; Kreitzer AC; Cui G; Li Y
    Cell; 2018 Jul; 174(2):481-496.e19. PubMed ID: 30007419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GPCR-Based Dopamine Sensors-A Detailed Guide to Inform Sensor Choice for In vivo Imaging.
    Labouesse MA; Cola RB; Patriarchi T
    Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33126757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of intra-accumbens dopaminergic grafts on behavioral deficits induced by 6-OHDA lesions of the nucleus accumbens or A10 dopaminergic neurons: a comparison.
    Herman JP; Choulli K; Abrous N; Dulluc J; Le Moal M
    Behav Brain Res; 1988 Jul; 29(1-2):73-83. PubMed ID: 3401324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential Dopamine Release Dynamics in the Nucleus Accumbens Core and Shell Reveal Complementary Signals for Error Prediction and Incentive Motivation.
    Saddoris MP; Cacciapaglia F; Wightman RM; Carelli RM
    J Neurosci; 2015 Aug; 35(33):11572-82. PubMed ID: 26290234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinctive Modulation of Dopamine Release in the Nucleus Accumbens Shell Mediated by Dopamine and Acetylcholine Receptors.
    Shin JH; Adrover MF; Alvarez VA
    J Neurosci; 2017 Nov; 37(46):11166-11180. PubMed ID: 29030431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Past, Present, and Future of Tools for Dopamine Detection.
    Zheng Y; Li Y
    Neuroscience; 2023 Aug; 525():13-25. PubMed ID: 37419404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetically encoded sensors for measuring histamine release both in vitro and in vivo.
    Dong H; Li M; Yan Y; Qian T; Lin Y; Ma X; Vischer HF; Liu C; Li G; Wang H; Leurs R; Li Y
    Neuron; 2023 May; 111(10):1564-1576.e6. PubMed ID: 36924772
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functionally Distinct Dopamine Signals in Nucleus Accumbens Core and Shell in the Freely Moving Rat.
    Dreyer JK; Vander Weele CM; Lovic V; Aragona BJ
    J Neurosci; 2016 Jan; 36(1):98-112. PubMed ID: 26740653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of fast-scan cyclic voltammetry for the in vivo characterization of optically evoked dopamine in the olfactory tubercle of the rat brain.
    Wakabayashi KT; Bruno MJ; Bass CE; Park J
    Analyst; 2016 Jun; 141(12):3746-55. PubMed ID: 27063845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved green and red GRAB sensors for monitoring spatiotemporal serotonin release in vivo.
    Deng F; Wan J; Li G; Dong H; Xia X; Wang Y; Li X; Zhuang C; Zheng Y; Liu L; Yan Y; Feng J; Zhao Y; Xie H; Li Y
    Nat Methods; 2024 Apr; 21(4):692-702. PubMed ID: 38443508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optogenetic versus electrical stimulation of dopamine terminals in the nucleus accumbens reveals local modulation of presynaptic release.
    Melchior JR; Ferris MJ; Stuber GD; Riddle DR; Jones SR
    J Neurochem; 2015 Sep; 134(5):833-44. PubMed ID: 26011081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Frequency-dependent effects of ethanol on dopamine release in the nucleus accumbens.
    Yorgason JT; Ferris MJ; Steffensen SC; Jones SR
    Alcohol Clin Exp Res; 2014 Feb; 38(2):438-47. PubMed ID: 24117706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrative opioid-GABAergic neuronal mechanisms regulating dopamine efflux in the nucleus accumbens of freely moving animals.
    Saigusa T; Aono Y; Waddington JL
    Pharmacol Rep; 2021 Aug; 73(4):971-983. PubMed ID: 33743175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Taar1-mediated modulation of presynaptic dopaminergic neurotransmission: role of D2 dopamine autoreceptors.
    Leo D; Mus L; Espinoza S; Hoener MC; Sotnikova TD; Gainetdinov RR
    Neuropharmacology; 2014 Jun; 81():283-91. PubMed ID: 24565640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Basolateral amygdala modulation of the nucleus accumbens dopamine response to stress: role of the medial prefrontal cortex.
    Stevenson CW; Gratton A
    Eur J Neurosci; 2003 Mar; 17(6):1287-95. PubMed ID: 12670317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of memory consolidation by the basolateral amygdala or nucleus accumbens shell requires concurrent dopamine receptor activation in both brain regions.
    LaLumiere RT; Nawar EM; McGaugh JL
    Learn Mem; 2005; 12(3):296-301. PubMed ID: 15930508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Local activation of metabotropic glutamate receptors inhibits the handling-induced increased release of dopamine in the nucleus accumbens but not that of dopamine or noradrenaline in the prefrontal cortex: comparison with inhibition of ionotropic receptors.
    Feenstra MG; Botterblom MH; van Uum JF
    J Neurochem; 1998 Mar; 70(3):1104-13. PubMed ID: 9489731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.