BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 3803706)

  • 1. Thyroid hormone metabolism by glial cells in primary culture.
    Courtin F; Chantoux F; Francon J
    Mol Cell Endocrinol; 1986 Dec; 48(2-3):167-78. PubMed ID: 3803706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thyroid hormone metabolism in neuron-enriched primary cultures of fetal rat brain cells.
    Courtin F; Chantoux F; Francon J
    Mol Cell Endocrinol; 1988 Jul; 58(1):73-84. PubMed ID: 3208989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for the presence of nuclear 3,5,3'-triiodothyronine receptors in secondary cultures of pure rat oligodendrocytes.
    Yusta B; Besnard F; Ortiz-Caro J; Pascual A; Aranda A; Sarliève L
    Endocrinology; 1988 May; 122(5):2278-84. PubMed ID: 3359982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Triiodothyronine binding in adult rat brain: compartmentation of receptor populations in purified neuronal and glial nuclei.
    Gullo D; Sinha AK; Woods R; Pervin K; Ekins RP
    Endocrinology; 1987 Jan; 120(1):325-31. PubMed ID: 3780566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thyroid hormone metabolism in primary cultures of fetal rat brain cells.
    Leonard JL; Larsen PR
    Brain Res; 1985 Feb; 327(1-2):1-13. PubMed ID: 3986494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thyroxine, triiodothyronine, and reverse triiodothyronine processing in the cerebellum: autoradiographic studies in adult rats.
    Dratman MB; Crutchfield FL
    Endocrinology; 1989 Sep; 125(3):1723-33. PubMed ID: 2759043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies of nuclear 3,5,3'-triiodothyronine binding in primary cultures of rat brain.
    Kolodny JM; Leonard JL; Larsen PR; Silva JE
    Endocrinology; 1985 Nov; 117(5):1848-57. PubMed ID: 2994999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of L-thyroxine in nuclear thyroid hormone receptor occupancy and growth hormone production in cultured GC cells.
    Halperin Y; Shapiro LE; Surks MI
    J Clin Invest; 1991 Oct; 88(4):1291-9. PubMed ID: 1918379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nuclear thyroid hormone receptors: ontogeny and thyroid hormone effects in sheep.
    Polk D; Cheromcha D; Reviczky A; Fisher DA
    Am J Physiol; 1989 Apr; 256(4 Pt 1):E543-9. PubMed ID: 2705523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nuclear tri-iodothyronine (T3) binding in neonatal rat brain suggests a direct glial requirement for T3 during development.
    Hubank M; Sinha AK; Gullo D; Ekins RP
    J Endocrinol; 1990 Sep; 126(3):409-15. PubMed ID: 2212932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Specific nuclear binding sites of triiodothyronine and reverse triiodothyronine in rat and pork liver: similarities and discrepancies.
    Wiersinga WM; Chopra IJ; Solomon DH
    Endocrinology; 1982 Jun; 110(6):2052-8. PubMed ID: 7075548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The binding of thyroid hormone receptors to DNA.
    Wilson BD; Wium CA; Gent WL
    Biochem Biophys Res Commun; 1984 Oct; 124(1):29-36. PubMed ID: 6093788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uptake of 3,3',5,5'-tetraiodothyroacetic acid and 3,3',5'-triiodothyronine in cultured rat anterior pituitary cells and their effects on thyrotropin secretion.
    Everts ME; Visser TJ; Moerings EP; Tempelaars AM; van Toor H; Docter R; de Jong M; Krenning EP; Hennemann G
    Endocrinology; 1995 Oct; 136(10):4454-61. PubMed ID: 7664665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thyroid hormone deiodinases in purified primary glial cell cultures.
    Cavalieri RR; Gavin LA; Cole R; de Vellis J
    Brain Res; 1986 Feb; 364(2):382-5. PubMed ID: 3947976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differences in cellular transport of tri-iodothyronine and thyroxine: cell cycle-dependent alteration of tri-iodothyronine uptake.
    Nagasawa T; Ichikawa K; Minemura K; Hara M; Yajima H; Sakurai A; Kobayashi H; Hiramatsu K; Shigematsu S; Hashizume K
    J Endocrinol; 1995 Dec; 147(3):479-85. PubMed ID: 8543918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thyroxine action on the rat liver nuclear thyroid-hormone receptors. Binding of thyroxine to the nuclear non-histone protein and induction of mitochondrial alpha-glycerophosphate dehydrogenase activity.
    Yoshimasa Y; Hamada S
    Biochem J; 1983 Feb; 210(2):331-7. PubMed ID: 6305340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3,3',5'-Triiodothyronine (reverse T3) and 3,3',5-triiodothyronine (T3) in fetal and adult sheep: studies of metabolic clearance rates, production rates, serum binding, and thyroidal content relative to thyroxine.
    Chopra IJ; Sack J; Fisher DA
    Endocrinology; 1975 Nov; 97(5):1080-8. PubMed ID: 171141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and characterization of L-triiodothyronine receptors in cells of glial and neuronal origin.
    Ortiz-Caro J; Yusta B; Montiel F; Villa A; Aranda A; Pascual A
    Endocrinology; 1986 Nov; 119(5):2163-7. PubMed ID: 3769867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship of receptor affinity to the modulation of thyroid hormone nuclear receptor levels and growth hormone synthesis by L-triiodothyronine and iodothyronine analogues in cultured GH1 cells.
    Samuels HH; Stanley F; Casanova J
    J Clin Invest; 1979 Jun; 63(6):1229-40. PubMed ID: 221536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binding of thyroid hormones to nuclear extracts of thyroid cells.
    Erkenbrack DE; Rosenberg LL
    Endocrinology; 1986 Jul; 119(1):311-7. PubMed ID: 3013592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.