These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 38037169)

  • 1. Unraveling the 2,3-diketo-L-gulonicĀ acid-dependent and -independent impacts of L-ascorbic acid on somatic cell reprogramming.
    Liang L; He M; Zhang Y; Wang C; Qin Z; Li Q; Yang T; Meng F; Zhou Y; Ge H; Song W; Chen S; Dong L; Ren Q; Li C; Guo L; Sun H; Zhang W; Pei D; Zheng H
    Cell Biosci; 2023 Nov; 13(1):218. PubMed ID: 38037169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of 2,3-diketo-L-gulonic acid on the oxidation of yolk lipoprotein.
    Li M; Suzuki E; Kurata T
    Biosci Biotechnol Biochem; 2001 Mar; 65(3):599-604. PubMed ID: 11330674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Possible Formation of Dehydro-L-ascorbic Acid from 2,3-Diketo-L-gulonic Acid in an Aqueous Solution.
    Miyake N; Kurata T
    Biosci Biotechnol Biochem; 1998; 62(7):1419-21. PubMed ID: 27397001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient Production of 2,5-Diketo-D-gluconic Acid by Reducing Browning Levels During
    Li G; Shan X; Zeng W; Yu S; Zhang G; Chen J; Zhou J
    Front Bioeng Biotechnol; 2022; 10():918277. PubMed ID: 35875491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Substrate selectivity of Gluconobacter oxydans for production of 2,5-diketo-D-gluconic acid and synthesis of 2-keto-L-gulonic acid in a multienzyme system.
    Ji A; Gao P
    Appl Biochem Biotechnol; 2001 Jun; 94(3):213-23. PubMed ID: 11563824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient production of 2-keto-L-gulonic acid from D-glucose in Gluconobacter oxydans ATCC9937 by mining key enzyme and transporter.
    Li G; Li D; Zeng W; Qin Z; Chen J; Zhou J
    Bioresour Technol; 2023 Sep; 384():129316. PubMed ID: 37315626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Positive feedback between retinoic acid and 2-phospho-L-ascorbic acid trisodium salt during somatic cell reprogramming.
    Zhang M; Li Q; Yang T; Meng F; Lai X; Liang L; Li C; Sun H; Sun J; Zheng H
    Cell Regen; 2020 Oct; 9(1):17. PubMed ID: 33000315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the food grade expression systems NICE and pSIP for the production of 2,5-diketo-D-gluconic acid reductase from Corynebacterium glutamicum.
    Kaswurm V; Nguyen TT; Maischberger T; Kulbe KD; Michlmayr H
    AMB Express; 2013 Jan; 3(1):7. PubMed ID: 23356419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic remodeling during somatic cell reprogramming to induced pluripotent stem cells: involvement of hypoxia-inducible factor 1.
    Ishida T; Nakao S; Ueyama T; Harada Y; Kawamura T
    Inflamm Regen; 2020; 40():8. PubMed ID: 32426078
    [TBL] [Abstract][Full Text] [Related]  

  • 10. L-Ascorbic Acid in the Epigenetic Regulation of Cancer Development and Stem Cell Reprogramming.
    Kovina AP; Petrova NV; Razin SV; Kantidze OL
    Acta Naturae; 2020; 12(4):5-14. PubMed ID: 33456974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sin3a drives mesenchymal-to-epithelial transition through cooperating with Tet1 in somatic cell reprogramming.
    Feng J; Zhu F; Ye D; Zhang Q; Guo X; Du C; Kang J
    Stem Cell Res Ther; 2022 Jan; 13(1):29. PubMed ID: 35073971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Serum starvation induced cell cycle synchronization facilitates human somatic cells reprogramming.
    Chen M; Huang J; Yang X; Liu B; Zhang W; Huang L; Deng F; Ma J; Bai Y; Lu R; Huang B; Gao Q; Zhuo Y; Ge J
    PLoS One; 2012; 7(4):e28203. PubMed ID: 22529890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TFAP2C facilitates somatic cell reprogramming by inhibiting c-Myc-dependent apoptosis and promoting mesenchymal-to-epithelial transition.
    Wang Y; Chen S; Jiang Q; Deng J; Cheng F; Lin Y; Cheng L; Ye Y; Chen X; Yao Y; Zhang X; Shi G; Dai L; Su X; Peng Y; Deng H
    Cell Death Dis; 2020 Jun; 11(6):482. PubMed ID: 32587258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Current understanding and future perspectives of the roles of sirtuins in the reprogramming and differentiation of pluripotent stem cells.
    Hsu YC; Wu YT; Tsai CL; Wei YH
    Exp Biol Med (Maywood); 2018 Mar; 243(6):563-575. PubMed ID: 29557214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HIF-1-alpha links mitochondrial perturbation to the dynamic acquisition of breast cancer tumorigenicity.
    Kuo CY; Cheng CT; Hou P; Lin YP; Ma H; Chung Y; Chi K; Chen Y; Li W; Kung HJ; Ann DK
    Oncotarget; 2016 Jun; 7(23):34052-69. PubMed ID: 27058900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Xist repression shows time-dependent effects on the reprogramming of female somatic cells to induced pluripotent stem cells.
    Chen Q; Gao S; He W; Kou X; Zhao Y; Wang H; Gao S
    Stem Cells; 2014 Oct; 32(10):2642-56. PubMed ID: 24965076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of 3,4-dihydroxy-2-oxo-butanal (L-threosone) as an intermediate compound in oxidative degradation of dehydro-L-ascorbic acid and 2,3-diketo-L-gulonic acid in a deuterium oxide phosphate buffer.
    Nishikawa Y; Toyoshima Y; Kurata T
    Biosci Biotechnol Biochem; 2001 Aug; 65(8):1707-12. PubMed ID: 11577707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellular ascorbic acid regulates the activity of major peroxidases in the apical poles of germinating white spruce (Picea glauca) somatic embryos.
    Stasolla C; Yeung EC
    Plant Physiol Biochem; 2007; 45(3-4):188-98. PubMed ID: 17400467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acceleration of Mesenchymal-to-Epithelial Transition (MET) during Direct Reprogramming Using Natural Compounds.
    Seo JH; Jang SW; Jeon YJ; Eun SY; Hong YJ; Do JT; Chae JI; Choi HW
    J Microbiol Biotechnol; 2022 Oct; 32(10):1245-1252. PubMed ID: 36224763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic switch and epithelial-mesenchymal transition cooperate to regulate pluripotency.
    Sun H; Yang X; Liang L; Zhang M; Li Y; Chen J; Wang F; Yang T; Meng F; Lai X; Li C; He J; He M; Xu Q; Li Q; Lin L; Pei D; Zheng H
    EMBO J; 2020 Apr; 39(8):e102961. PubMed ID: 32090361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.