These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38037396)

  • 1. Tuning the surface properties of AuPd nanoparticles for adsorption of O and CO.
    Chepkasov IV; Zamulin IS; Baidyshev VS; Kvashnin AG
    Phys Chem Chem Phys; 2023 Dec; 25(48):33031-33037. PubMed ID: 38037396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure, stability, electronic, magnetic, and catalytic properties of monometallic Pd, Au, and bimetallic Pd-Au core-shell nanoparticles.
    Wang Q; Lu X; Zhen Y; Li WQ; Chen GH; Yang Y
    J Chem Phys; 2018 Dec; 149(24):244307. PubMed ID: 30599716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlled synthesis and synergistic effects of graphene-supported PdAu bimetallic nanoparticles with tunable catalytic properties.
    Liu CH; Liu RH; Sun QJ; Chang JB; Gao X; Liu Y; Lee ST; Kang ZH; Wang SD
    Nanoscale; 2015 Apr; 7(14):6356-62. PubMed ID: 25786139
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced Hot Electron Flow and Catalytic Synergy by Engineering Core-Shell Structures on Au-Pd Nanocatalysts.
    Jeon B; Kim D; Kim TS; Lee HK; Park JY
    ACS Appl Mater Interfaces; 2023 Nov; ():. PubMed ID: 37927055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stabilization of Au at edges of bimetallic PdAu nanocrystallites.
    Yudanov IV; Neyman KM
    Phys Chem Chem Phys; 2010 May; 12(19):5094-100. PubMed ID: 20445912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Near-Ambient Pressure XPS and MS Study of CO Oxidation over Model Pd-Au/HOPG Catalysts: The Effect of the Metal Ratio.
    Bukhtiyarov AV; Prosvirin IP; Panafidin MA; Fedorov AY; Klyushin AY; Knop-Gericke A; Zubavichus YV; Bukhtiyarov VI
    Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Charge redistribution in core-shell nanoparticles to promote oxygen reduction.
    Tang W; Henkelman G
    J Chem Phys; 2009 May; 130(19):194504. PubMed ID: 19466840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive kinetic Monte Carlo simulations of surface segregation in PdAu nanoparticles.
    Li L; Li X; Duan Z; Meyer RJ; Carr R; Raman S; Koziol L; Henkelman G
    Nanoscale; 2019 May; 11(21):10524-10535. PubMed ID: 31116210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electronic structure and catalytic activity of exsolved Ni on Pd core-shell nanoparticles.
    Kumar P; Monder DS
    Phys Chem Chem Phys; 2022 Dec; 24(48):29801-29816. PubMed ID: 36468269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pd Single-Atom Sites on the Surface of PdAu Nanoparticles: A DFT-Based Topological Search for Suitable Compositions.
    Mamatkulov M; Yudanov IV; Bukhtiyarov AV; Neyman KM
    Nanomaterials (Basel); 2021 Jan; 11(1):. PubMed ID: 33430403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PdAu alloy nanoparticles supported on nitrogen-doped carbon black as highly active catalysts for Ullmann coupling and nitrophenol hydrogenation reactions.
    Han F; Xia J; Zhang X; Fu Y
    RSC Adv; 2019 Jun; 9(31):17812-17823. PubMed ID: 35520540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peptide-Directed PdAu Nanoscale Surface Segregation: Toward Controlled Bimetallic Architecture for Catalytic Materials.
    Bedford NM; Showalter AR; Woehl TJ; Hughes ZE; Lee S; Reinhart B; Ertem SP; Coughlin EB; Ren Y; Walsh TR; Bunker BA
    ACS Nano; 2016 Sep; 10(9):8645-59. PubMed ID: 27583654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synergetic effect on catalytic activity and charge transfer in Pt-Pd bimetallic model catalysts prepared by atomic layer deposition.
    Jang MH; Kizilkaya O; Kropf AJ; Kurtz RL; Elam JW; Lei Y
    J Chem Phys; 2020 Jan; 152(2):024710. PubMed ID: 31941318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unlocking synergy in bimetallic catalysts by core-shell design.
    van der Hoeven JES; Jelic J; Olthof LA; Totarella G; van Dijk-Moes RJA; Krafft JM; Louis C; Studt F; van Blaaderen A; de Jongh PE
    Nat Mater; 2021 Sep; 20(9):1216-1220. PubMed ID: 33958769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bimetallic Effect of Single Nanocatalysts Visualized by Super-Resolution Catalysis Imaging.
    Chen G; Zou N; Chen B; Sambur JB; Choudhary E; Chen P
    ACS Cent Sci; 2017 Nov; 3(11):1189-1197. PubMed ID: 29202021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding the atomic-level process of CO-adsorption-driven surface segregation of Pd in (AuPd)
    An H; Ha H; Yoo M; Kim HY
    Nanoscale; 2017 Aug; 9(33):12077-12086. PubMed ID: 28799609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural analysis of PdAu dendrimer-encapsulated bimetallic nanoparticles.
    Weir MG; Knecht MR; Frenkel AI; Crooks RM
    Langmuir; 2010 Jan; 26(2):1137-46. PubMed ID: 19839631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbially supported synthesis of catalytically active bimetallic Pd-Au nanoparticles.
    Hosseinkhani B; Søbjerg LS; Rotaru AE; Emtiazi G; Skrydstrup T; Meyer RL
    Biotechnol Bioeng; 2012 Jan; 109(1):45-52. PubMed ID: 21830201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomic-Scale Observation of Bimetallic Au-CuO
    Luo J; Liu Y; Zhang L; Ren Y; Miao S; Zhang B; Su DS; Liang C
    ACS Appl Mater Interfaces; 2019 Sep; 11(38):35468-35478. PubMed ID: 31483599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shape Changes in AuPd Alloy Nanoparticles Controlled by Anisotropic Surface Stress Relaxation.
    Nelli D; Roncaglia C; Ferrando R; Minnai C
    J Phys Chem Lett; 2021 May; 12(19):4609-4615. PubMed ID: 33971714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.