These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 38037611)

  • 1. A Multi-Fluorophore Staining Scheme for Identification and Quantification of Vomocytosis.
    Pacifici N; Rojalin T; Carney RP; Lewis JS
    Chem Biomed Imaging; 2023 Nov; 1(8):725-737. PubMed ID: 38037611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Image Processing Algorithm for Facile and Reproducible Quantification of Vomocytosis.
    Senthil N; Pacifici N; Cruz-Acuña M; Diener A; Han H; Lewis JS
    Chem Biomed Imaging; 2023 Dec; 1(9):831-842. PubMed ID: 38155727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vomocytosis of Cryptococcus neoformans cells from murine, bone marrow-derived dendritic cells.
    Pacifici N; Cruz-Acuña M; Diener A; Tu A; Senthil N; Han H; Lewis JS
    PLoS One; 2023; 18(3):e0280692. PubMed ID: 36928392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Loss of the scavenger receptor MARCO results in uncontrolled vomocytosis of fungi from macrophages.
    Onyishi CU; Jeon Y; Fejer G; Mukhopadhyay S; Gordon S; May RC
    Eur J Immunol; 2024 Jun; 54(6):e2350771. PubMed ID: 38494423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using Flow Cytometry to Analyze Cryptococcus Infection of Macrophages.
    Evans RJ; Voelz K; Johnston SA; May RC
    Methods Mol Biol; 2017; 1519():349-357. PubMed ID: 27815892
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Watkins RA; Andrews A; Wynn C; Barisch C; King JS; Johnston SA
    Front Cell Infect Microbiol; 2018; 8():108. PubMed ID: 29686972
    [No Abstract]   [Full Text] [Related]  

  • 7. Vomocytosis of live pathogens from macrophages is regulated by the atypical MAP kinase ERK5.
    Gilbert AS; Seoane PI; Sephton-Clark P; Bojarczuk A; Hotham R; Giurisato E; Sarhan AR; Hillen A; Velde GV; Gray NS; Alessi DR; Cunningham DL; Tournier C; Johnston SA; May RC
    Sci Adv; 2017 Aug; 3(8):e1700898. PubMed ID: 28835924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vomocytosis: Too Much Booze, Base, or Calcium?
    Cruz-Acuña M; Pacifici N; Lewis JS
    mBio; 2019 Dec; 10(6):. PubMed ID: 31874916
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The human fungal pathogen Cryptococcus neoformans escapes macrophages by a phagosome emptying mechanism that is inhibited by Arp2/3 complex-mediated actin polymerisation.
    Johnston SA; May RC
    PLoS Pathog; 2010 Aug; 6(8):e1001041. PubMed ID: 20714349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The fungal pathogen Cryptococcus neoformans manipulates macrophage phagosome maturation.
    Smith LM; Dixon EF; May RC
    Cell Microbiol; 2015 May; 17(5):702-13. PubMed ID: 25394938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vomocytosis: What we know so far.
    Seoane PI; May RC
    Cell Microbiol; 2020 Feb; 22(2):e13145. PubMed ID: 31730731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bet-hedging antimicrobial strategies in macrophage phagosome acidification drive the dynamics of Cryptococcus neoformans intracellular escape mechanisms.
    Dragotakes Q; Jacobs E; Ramirez LS; Yoon OI; Perez-Stable C; Eden H; Pagnotta J; Vij R; Bergman A; D'Alessio F; Casadevall A
    PLoS Pathog; 2022 Jul; 18(7):e1010697. PubMed ID: 35816543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Viral infection triggers interferon-induced expulsion of live Cryptococcus neoformans by macrophages.
    Seoane PI; Taylor-Smith LM; Stirling D; Bell LCK; Noursadeghi M; Bailey D; May RC
    PLoS Pathog; 2020 Feb; 16(2):e1008240. PubMed ID: 32106253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cryptococcus interactions with macrophages: evasion and manipulation of the phagosome by a fungal pathogen.
    Johnston SA; May RC
    Cell Microbiol; 2013 Mar; 15(3):403-11. PubMed ID: 23127124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantifying donor-to-donor variation in macrophage responses to the human fungal pathogen Cryptococcus neoformans.
    Garelnabi M; Taylor-Smith LM; Bielska E; Hall RA; Stones D; May RC
    PLoS One; 2018; 13(3):e0194615. PubMed ID: 29596441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Throughput Raman Flow Cytometry and Beyond.
    Gala de Pablo J; Lindley M; Hiramatsu K; Goda K
    Acc Chem Res; 2021 May; 54(9):2132-2143. PubMed ID: 33788539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. da_Tracker: Automated workflow for high throughput single cell and single phagosome tracking in infected cells.
    Augenstreich J; Poddar A; Belew AT; El-Sayed NM; Briken V
    bioRxiv; 2024 Apr; ():. PubMed ID: 38645070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SEC14 is a specific requirement for secretion of phospholipase B1 and pathogenicity of Cryptococcus neoformans.
    Chayakulkeeree M; Johnston SA; Oei JB; Lev S; Williamson PR; Wilson CF; Zuo X; Leal AL; Vainstein MH; Meyer W; Sorrell TC; May RC; Djordjevic JT
    Mol Microbiol; 2011 May; 80(4):1088-101. PubMed ID: 21453402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expulsion of live pathogenic yeast by macrophages.
    Ma H; Croudace JE; Lammas DA; May RC
    Curr Biol; 2006 Nov; 16(21):2156-60. PubMed ID: 17084701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.