BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

381 related articles for article (PubMed ID: 38037664)

  • 1. Pharmacokinetics and tumor delivery of nanoparticles.
    Yuan L; Chen Q; Riviere JE; Lin Z
    J Drug Deliv Sci Technol; 2023 May; 83():. PubMed ID: 38037664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pharmacokinetics of metallic nanoparticles.
    Lin Z; Monteiro-Riviere NA; Riviere JE
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2015; 7(2):189-217. PubMed ID: 25316649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Poly(Glycerol)-Based Biomedical Nanodevices Constructed by Functional Programming on Inorganic Nanoparticles for Cancer Nanomedicine.
    Komatsu N
    Acc Chem Res; 2023 Jan; 56(2):106-116. PubMed ID: 36602954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inorganic Nanoparticles for Cancer Therapy: A Transition from Lab to Clinic.
    Bayda S; Hadla M; Palazzolo S; Riello P; Corona G; Toffoli G; Rizzolio F
    Curr Med Chem; 2018; 25(34):4269-4303. PubMed ID: 29284391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toxicological assessment of nanoparticle interactions with the pulmonary system.
    Osman NM; Sexton DW; Saleem IY
    Nanotoxicology; 2020 Feb; 14(1):21-58. PubMed ID: 31502904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The stiffness-dependent tumor cell internalization of liquid metal nanoparticles.
    He J; Pang W; Gu B; Lin X; Ye J
    Nanoscale; 2022 Nov; 14(45):16902-16917. PubMed ID: 36342434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pharmacokinetics, tissue distribution, and metabolites of a polyvinylpyrrolidone-coated norcantharidin chitosan nanoparticle formulation in rats and mice, using LC-MS/MS.
    Ding XY; Hong CJ; Liu Y; Gu ZL; Xing KL; Zhu AJ; Chen WL; Shi LS; Zhang XN; Zhang Q
    Int J Nanomedicine; 2012; 7():1723-35. PubMed ID: 22619523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface engineering of inorganic nanoparticles for imaging and therapy.
    Nam J; Won N; Bang J; Jin H; Park J; Jung S; Jung S; Park Y; Kim S
    Adv Drug Deliv Rev; 2013 May; 65(5):622-48. PubMed ID: 22975010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic formulation of nanoparticles for biomedical applications.
    Shepherd SJ; Issadore D; Mitchell MJ
    Biomaterials; 2021 Jul; 274():120826. PubMed ID: 33965797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pharmacokinetics, Metabolism, Distribution and Permeability of Nanomedicine.
    Ravindran S; Suthar JK; Rokade R; Deshpande P; Singh P; Pratinidhi A; Khambadkhar R; Utekar S
    Curr Drug Metab; 2018; 19(4):327-334. PubMed ID: 29512450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strategies to improve tumor penetration of nanomedicines through nanoparticle design.
    Zhang YR; Lin R; Li HJ; He WL; Du JZ; Wang J
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2019 Jan; 11(1):e1519. PubMed ID: 29659166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tumor-Acidity-Cleavable Maleic Acid Amide (TACMAA): A Powerful Tool for Designing Smart Nanoparticles To Overcome Delivery Barriers in Cancer Nanomedicine.
    Du JZ; Li HJ; Wang J
    Acc Chem Res; 2018 Nov; 51(11):2848-2856. PubMed ID: 30346728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multistage Nanoparticle Delivery System-A New Approach to Cancer Therapeutics.
    Li G; Chen L; Xin P; Huang J; Wu J
    J Biomed Nanotechnol; 2020 Nov; 16(11):1570-1587. PubMed ID: 33461650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A mathematical model to predict nanomedicine pharmacokinetics and tumor delivery.
    Dogra P; Butner JD; Ruiz Ramírez J; Chuang YL; Noureddine A; Jeffrey Brinker C; Cristini V; Wang Z
    Comput Struct Biotechnol J; 2020; 18():518-531. PubMed ID: 32206211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A review on microfluidic-assisted nanoparticle synthesis, and their applications using multiscale simulation methods.
    Agha A; Waheed W; Stiharu I; Nerguizian V; Destgeer G; Abu-Nada E; Alazzam A
    Discov Nano; 2023 Feb; 18(1):18. PubMed ID: 36800044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pharmacokinetics, pharmacodynamics and toxicology of theranostic nanoparticles.
    Kang H; Mintri S; Menon AV; Lee HY; Choi HS; Kim J
    Nanoscale; 2015 Dec; 7(45):18848-62. PubMed ID: 26528835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nano-Cell Interactions of Non-Cationic Bionanomaterials.
    Ho LWC; Liu Y; Han R; Bai Q; Choi CHJ
    Acc Chem Res; 2019 Jun; 52(6):1519-1530. PubMed ID: 31058496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theranostic Nanoparticles for RNA-Based Cancer Treatment.
    Revia RA; Stephen ZR; Zhang M
    Acc Chem Res; 2019 Jun; 52(6):1496-1506. PubMed ID: 31135134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimal Physicochemical Properties of Antibody-Nanoparticle Conjugates for Improved Tumor Targeting.
    Mittelheisser V; Coliat P; Moeglin E; Goepp L; Goetz JG; Charbonnière LJ; Pivot X; Detappe A
    Adv Mater; 2022 Jun; 34(24):e2110305. PubMed ID: 35289003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stiffness of targeted layer-by-layer nanoparticles impacts elimination half-life, tumor accumulation, and tumor penetration.
    Kong SM; Costa DF; Jagielska A; Van Vliet KJ; Hammond PT
    Proc Natl Acad Sci U S A; 2021 Oct; 118(42):. PubMed ID: 34649991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.