These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38037942)

  • 1. Heat and force coupling analysis during precision glass molding of free-form optical elements.
    Zhang Z; Liu Y; Xue C
    Appl Opt; 2023 Nov; 62(31):8374-8380. PubMed ID: 38037942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis on the instability of the surface profiles of precision molding chalcogenide glass aspherical lenses in mass production.
    Liu Y; Xue C; Sun G; Zhang G
    Opt Express; 2023 Sep; 31(19):31158-31176. PubMed ID: 37710642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction model of residual stress during precision glass molding of optical lenses.
    Fu H; Xue C; Liu Y; Cao B; Lang C; Yang C
    Appl Opt; 2022 Feb; 61(5):1194-1202. PubMed ID: 35201172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of lens fracture in precision glass molding with the finite element method.
    Liu Y; Xing Y; Li C; Yang C; Xue C
    Appl Opt; 2021 Sep; 60(26):8022-8030. PubMed ID: 34613063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation of heat transfer in the progress of precision glass molding with a finite element method for chalcogenide glass.
    Liu Y; Xing Y; Yang C; Li C; Xue C
    Appl Opt; 2019 Sep; 58(27):7311-7318. PubMed ID: 31674375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Elastic Modulus on the Accuracy of the Finite Element Method in Simulating Precision Glass Molding.
    Yao H; Lv K; Zhang J; Wang H; Xie X; Zhu X; Deng J; Zhuo S
    Materials (Basel); 2019 Nov; 12(22):. PubMed ID: 31752215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical optimization platform for precision glass molding by the simplex algorithm.
    Liu W; Zhang L
    Appl Opt; 2017 Apr; 56(12):3245-3250. PubMed ID: 28430244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Review of the Precision Glass Molding of Chalcogenide Glass (ChG) for Infrared Optics.
    Zhou T; Zhu Z; Liu X; Liang Z; Wang X
    Micromachines (Basel); 2018 Jul; 9(7):. PubMed ID: 30424270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deformation Analysis of the Glass Preform in the Progress of Precision Glass Molding for Fabricating Chalcogenide Glass Diffractive Optics with the Finite Element Method.
    Liu Y; Xing Y; Fu H; Li C; Yang C; Cao B; Xue C
    Micromachines (Basel); 2021 Dec; 12(12):. PubMed ID: 34945393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of thermoforming mechanism and optical properties' change of chalcogenide glass in precision glass molding.
    Zhang L; Zhou W; Yi AY
    Appl Opt; 2018 Aug; 57(22):6358-6368. PubMed ID: 30117863
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface defect analysis on formed chalcogenide glass Ge
    Zhou T; Zhou Q; Xie J; Liu X; Wang X; Ruan H
    Appl Opt; 2017 Oct; 56(30):8394-8402. PubMed ID: 29091618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation of the Refractive Index Variation and Validation of the Form Deviation in Precisely Molded Chalcogenide Glass Lenses (IRG 26) Considering the Stress and Structure Relaxation.
    Jiang C; Tovar CM; Staasmeyer JH; Friedrichs M; Grunwald T; Bergs T
    Materials (Basel); 2022 Sep; 15(19):. PubMed ID: 36234096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of index change in compression molding of As
    Zhang L; Zhou W; Naples NJ; Yi AY
    Appl Opt; 2018 May; 57(15):4245-4252. PubMed ID: 29791401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulation and Experimental Study on the Precision Molding of Irregular Vehicle Glass Components.
    Chen Z; Hu S; Zhang S; Zhang Q; Zhang Z; Ming W
    Micromachines (Basel); 2023 Oct; 14(10):. PubMed ID: 37893411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Refractive index and dispersion variation in precision optical glass molding by computed tomography.
    Zhao W; Chen Y; Shen L; Yi AY
    Appl Opt; 2009 Jul; 48(19):3588-95. PubMed ID: 19571913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transferability of Diffractive Structure in the Compression Molding of Chalcogenide Glass.
    Son BR; Kim JK; Choi YS; Park C
    Micromachines (Basel); 2023 Jan; 14(2):. PubMed ID: 36837972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pre-Compensation of Mold in Precision Glass Molding Based on Mathematical Analysis.
    Zhang Y; You K; Fang F
    Micromachines (Basel); 2020 Nov; 11(12):. PubMed ID: 33266257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of an Injection Mold with High Energy Efficiency of Vulcanization for Liquid Silicone Rubber Injection Molding of the Fisheye Optical Lens.
    Kuo CC; Tasi QZ; Hunag SH; Tseng SF
    Polymers (Basel); 2023 Jun; 15(13):. PubMed ID: 37447514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental Investigation on Laser Assisted Diamond Turning of Binderless Tungsten Carbide by In-Process Heating.
    You K; Fang F; Yan G; Zhang Y
    Micromachines (Basel); 2020 Dec; 11(12):. PubMed ID: 33327609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of temperature on the molding of chalcogenide glass lenses for infrared imaging applications.
    Cha du H; Kim HJ; Park HS; Hwang Y; Kim JH; Hong JH; Lee KS
    Appl Opt; 2010 Mar; 49(9):1607-13. PubMed ID: 20300157
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.