These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Electrically tunable lens with a non-monotonic wavefront control capability. Zemska Z; Galstian T Opt Lett; 2022 Sep; 47(17):4287-4290. PubMed ID: 36048635 [TBL] [Abstract][Full Text] [Related]
4. Wavefront correction and high-resolution in vivo OCT imaging with an objective integrated multi-actuator adaptive lens. Bonora S; Jian Y; Zhang P; Zam A; Pugh EN; Zawadzki RJ; Sarunic MV Opt Express; 2015 Aug; 23(17):21931-41. PubMed ID: 26368169 [TBL] [Abstract][Full Text] [Related]
5. Comparison of annular wavefront interpretation with Zernike circle polynomials and annular polynomials. Hou X; Wu F; Yang L; Chen Q Appl Opt; 2006 Dec; 45(35):8893-901. PubMed ID: 17119589 [TBL] [Abstract][Full Text] [Related]
6. Aberration control in adaptive optics: a numerical study of arbitrarily deformable liquid lenses. Lima NC; Mishra K; Mugele F Opt Express; 2017 Mar; 25(6):6700-6711. PubMed ID: 28381014 [TBL] [Abstract][Full Text] [Related]
7. Design and wavefront characterization of an electrically tunable aspherical optofluidic lens. Mishra K; Narayanan A; Mugele F Opt Express; 2019 Jun; 27(13):17601-17609. PubMed ID: 31252717 [TBL] [Abstract][Full Text] [Related]
8. Zernike monomials in wide field of view optical designs. Johnson TP; Sasian J Appl Opt; 2020 Aug; 59(22):G146-G153. PubMed ID: 32749327 [TBL] [Abstract][Full Text] [Related]
10. Phase modulators with tunability in wavefronts and optical axes originating from anisotropic molecular tilts under symmetric electric field II: experiments. Wang YJ; Lin YH; Cakmakci O; Reshetnyak V Opt Express; 2020 Mar; 28(6):8985-9001. PubMed ID: 32225513 [TBL] [Abstract][Full Text] [Related]
11. Orthonormal curvature polynomials over a unit circle: basis set derived from curvatures of Zernike polynomials. Zhao C; Burge JH Opt Express; 2013 Dec; 21(25):31430-43. PubMed ID: 24514717 [TBL] [Abstract][Full Text] [Related]
14. Dynamic control of defocus, astigmatism, and tilt aberrations with a large area foveal liquid crystal lens. Louis B; Tigran G Appl Opt; 2024 Apr; 63(11):2798-2805. PubMed ID: 38856374 [TBL] [Abstract][Full Text] [Related]
15. Electrically tunable liquid crystal lens with a serpentine electrode design. Stevens J; Galstian T Opt Lett; 2022 Feb; 47(4):910-912. PubMed ID: 35167556 [TBL] [Abstract][Full Text] [Related]
16. Applications of the elastic modes of a circular plate in wavefront correction of the adaptive optics and the active optics. Wang H; Zhang M; Gao J; Lan Y; Zuo Y; Zheng X Opt Express; 2021 Jan; 29(2):1109-1124. PubMed ID: 33726333 [TBL] [Abstract][Full Text] [Related]
17. Comparison of wavefront reconstructions with Zernike polynomials and Fourier transforms. Dai GM J Refract Surg; 2006 Nov; 22(9):943-8. PubMed ID: 17124894 [TBL] [Abstract][Full Text] [Related]
18. Modal liquid crystal wavefront corrector. Kotova S; Kvashnin M; Rakhmatulin M; Zayakin O; Guralnik I; Klimov N; Clark P; Love G; Naumov A; Saunter C; Loktev M; Vdovin G; Toporkova L Opt Express; 2002 Nov; 10(22):1258-72. PubMed ID: 19451987 [TBL] [Abstract][Full Text] [Related]
19. Optimal, blind-search modal wavefront correction in atmospheric turbulence. Part I: simulations. Segel M; Gladysz S Opt Express; 2021 Jan; 29(2):805-820. PubMed ID: 33726309 [TBL] [Abstract][Full Text] [Related]