BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 3803859)

  • 1. [Morphologic-functional study of the locomotor system of penguins as a general model of movement in under-water flight. I].
    Bannasch R
    Gegenbaurs Morphol Jahrb; 1986; 132(5):645-79. PubMed ID: 3803859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Morphologico-functional study of the locomotor system of penguins as a principle of the general motor model of "underwater flight." II].
    Bannasch R
    Gegenbaurs Morphol Jahrb; 1986; 132(6):757-817. PubMed ID: 3569810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Morphologico-functional study of the locomotor system of penguins as a principle of the general motor model of "underwater flight." III].
    Bannasch R
    Gegenbaurs Morphol Jahrb; 1987; 133(1):39-59. PubMed ID: 3569818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anatomy and histochemistry of flight muscles in a wing-propelled diving bird, the Atlantic puffin, Fratercula arctica.
    Kovacs CE; Meyers RA
    J Morphol; 2000 May; 244(2):109-25. PubMed ID: 10761049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Swim speeds and stroke patterns in wing-propelled divers: a comparison among alcids and a penguin.
    Watanuki Y; Wanless S; Harris M; Lovvorn JR; Miyazaki M; Tanaka H; Sato K
    J Exp Biol; 2006 Apr; 209(Pt 7):1217-30. PubMed ID: 16547294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wing-assisted incline running and the evolution of flight.
    Dial KP
    Science; 2003 Jan; 299(5605):402-4. PubMed ID: 12532020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Poor flight performance in deep-diving cormorants.
    Watanabe YY; Takahashi A; Sato K; Viviant M; Bost CA
    J Exp Biol; 2011 Feb; 214(Pt 3):412-21. PubMed ID: 21228200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Forelimb posture in dinosaurs and the evolution of the avian flapping flight-stroke.
    Nudds RL; Dyke GJ
    Evolution; 2009 Apr; 63(4):994-1002. PubMed ID: 19154383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinematics and hydrodynamics analyses of swimming penguins: wing bending improves propulsion performance.
    Harada N; Oura T; Maeda M; Shen Y; Kikuchi DM; Tanaka H
    J Exp Biol; 2021 Nov; 224(21):. PubMed ID: 34553753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A critical ligamentous mechanism in the evolution of avian flight.
    Baier DB; Gatesy SM; Jenkins FA
    Nature; 2007 Jan; 445(7125):307-10. PubMed ID: 17173029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of intense wing molt on diving in alcids and potential influences on the evolution of molt patterns.
    Bridge ES
    J Exp Biol; 2004 Aug; 207(Pt 17):3003-14. PubMed ID: 15277555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Avian furcula morphology may indicate relationships of flight requirements among birds.
    Hui CA
    J Morphol; 2002 Mar; 251(3):284-93. PubMed ID: 11835365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The aerodynamic benefit of wing-wing interaction depends on stroke trajectory in flapping insect wings.
    Lehmann FO; Pick S
    J Exp Biol; 2007 Apr; 210(Pt 8):1362-77. PubMed ID: 17401119
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanics and physiology of gait selection in flying birds.
    Tobalske BW
    Physiol Biochem Zool; 2000; 73(6):736-50. PubMed ID: 11121347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of the vortex wakes of flying and swimming vertebrates.
    Rayner JM
    Symp Soc Exp Biol; 1995; 49():131-55. PubMed ID: 8571221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Osteology and myology of the wing of the Emu (Dromaius novaehollandiae), and its bearing on the evolution of vestigial structures.
    Maxwell EE; Larsson HC
    J Morphol; 2007 May; 268(5):423-41. PubMed ID: 17390336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energetic costs of surface swimming and diving of birds.
    Butler PJ
    Physiol Biochem Zool; 2000; 73(6):699-705. PubMed ID: 11121344
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Forelimb skeletal morphology and flight mode evolution in pelecaniform birds.
    Simons EL
    Zoology (Jena); 2010 Jan; 113(1):39-46. PubMed ID: 20071157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinematic and hydrodynamic analyses of turning manoeuvres in penguins: body banking and wing upstroke generate centripetal force.
    Harada N; Tanaka H
    J Exp Biol; 2022 Dec; 225(24):. PubMed ID: 36408785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wing bone stresses in free flying bats and the evolution of skeletal design for flight.
    Swartz SM; Bennett MB; Carrier DR
    Nature; 1992 Oct; 359(6397):726-9. PubMed ID: 1436035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.