BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 38038768)

  • 1. Identification and validation of seed dormancy loci and candidate genes and construction of regulatory networks by WGCNA in maize introgression lines.
    Ma X; Feng L; Tao A; Zenda T; He Y; Zhang D; Duan H; Tao Y
    Theor Appl Genet; 2023 Dec; 136(12):259. PubMed ID: 38038768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combining QTL mapping and gene co-expression network analysis for prediction of candidate genes and molecular network related to yield in wheat.
    Wei J; Fang Y; Jiang H; Wu XT; Zuo JH; Xia XC; Li JQ; Stich B; Cao H; Liu YX
    BMC Plant Biol; 2022 Jun; 22(1):288. PubMed ID: 35698038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping pre-harvest sprouting resistance loci in AAC Innova × AAC Tenacious spring wheat population.
    Dhariwal R; Hiebert CW; Sorrells ME; Spaner D; Graf RJ; Singh J; Randhawa HS
    BMC Genomics; 2021 Dec; 22(1):900. PubMed ID: 34911435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of loci for pre-harvest sprouting resistance in the highly dormant spring wheat RL4137.
    Liton MMUA; McCartney CA; Hiebert CW; Kumar S; Jordan MC; Ayele BT
    Theor Appl Genet; 2021 Jan; 134(1):113-124. PubMed ID: 33001261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide association and targeted transcriptomic analyses reveal loci and candidate genes regulating preharvest sprouting in barley.
    Kaur G; Toora PK; Tuan PA; McCartney CA; Izydorczyk MS; Badea A; Ayele BT
    Theor Appl Genet; 2023 Aug; 136(9):202. PubMed ID: 37642745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative genetic analysis of a wheat seed dormancy QTL with rice and Brachypodium identifies candidate genes for ABA perception and calcium signaling.
    Somyong S; Munkvold JD; Tanaka J; Benscher D; Sorrells ME
    Funct Integr Genomics; 2011 Sep; 11(3):479-90. PubMed ID: 21468744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fine mapping of a preharvest sprouting QTL interval on chromosome 2B in white wheat.
    Somyong S; Ishikawa G; Munkvold JD; Tanaka J; Benscher D; Cho YG; Sorrells ME
    Theor Appl Genet; 2014 Aug; 127(8):1843-55. PubMed ID: 24985065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of two new QTLs of maize (Zea mays L.) underlying kernel row number using the HNAU-NAM1 population.
    Fei X; Wang Y; Zheng Y; Shen X; E L; Ding J; Lai J; Song W; Zhao H
    BMC Genomics; 2022 Aug; 23(1):593. PubMed ID: 35971070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A combination of linkage mapping and GWAS brings new elements on the genetic basis of yield-related traits in maize across multiple environments.
    Zhang X; Guan Z; Li Z; Liu P; Ma L; Zhang Y; Pan L; He S; Zhang Y; Li P; Ge F; Zou C; He Y; Gao S; Pan G; Shen Y
    Theor Appl Genet; 2020 Oct; 133(10):2881-2895. PubMed ID: 32594266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combined GWAS and QTL analysis for dissecting the genetic architecture of kernel test weight in maize.
    Zhang X; Guan Z; Wang L; Fu J; Zhang Y; Li Z; Ma L; Liu P; Zhang Y; Liu M; Li P; Zou C; He Y; Lin H; Yuan G; Gao S; Pan G; Shen Y
    Mol Genet Genomics; 2020 Mar; 295(2):409-420. PubMed ID: 31807910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of Candidate QTLs and Genes for Ear Diameter by Multi-Parent Population in Maize.
    Jiang F; Liu L; Li Z; Bi Y; Yin X; Guo R; Wang J; Zhang Y; Shaw RK; Fan X
    Genes (Basel); 2023 Jun; 14(6):. PubMed ID: 37372485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substitution mapping of QTLs controlling seed dormancy using single segment substitution lines derived from multiple cultivated rice donors in seven cropping seasons.
    Zhou Y; Xie Y; Cai J; Liu C; Zhu H; Jiang R; Zhong Y; Zhang G; Tan B; Liu G; Fu X; Liu Z; Wang S; Zhang G; Zeng R
    Theor Appl Genet; 2017 Jun; 130(6):1191-1205. PubMed ID: 28283703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-Wide Association Analysis Reveals Genetic Architecture and Candidate Genes Associated with Grain Yield and Other Traits under Low Soil Nitrogen in Early-Maturing White Quality Protein Maize Inbred Lines.
    Bhadmus OA; Badu-Apraku B; Adeyemo OA; Agre PA; Queen ON; Ogunkanmi AL
    Genes (Basel); 2022 May; 13(5):. PubMed ID: 35627211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of QTLs with additive, epistatic and QTL × development interaction effects for seed dormancy in rice.
    Wang L; Cheng J; Lai Y; Du W; Huang X; Wang Z; Zhang H
    Planta; 2014 Feb; 239(2):411-20. PubMed ID: 24189714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrating GWAS and transcriptomics to identify genes involved in seed dormancy in rice.
    Shi J; Shi J; Liang W; Zhang D
    Theor Appl Genet; 2021 Nov; 134(11):3553-3562. PubMed ID: 34312681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phenotypic and genotypic characterization of near-isogenic lines targeting a major 4BL QTL responsible for pre-harvest sprouting in wheat.
    Wang X; Liu H; Liu G; Mia MS; Siddique KHM; Yan G
    BMC Plant Biol; 2019 Aug; 19(1):348. PubMed ID: 31399046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide association study reveals a NAC transcription factor TaNAC074 linked to pre-harvest sprouting tolerance in wheat.
    Jiang H; Fang Y; Yan D; Liu ST; Wei J; Guo FL; Wu XT; Cao H; Yin CB; Lu F; Gao LF; Liu YX
    Theor Appl Genet; 2022 Sep; 135(9):3265-3276. PubMed ID: 35882642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. QTL mapping of pre-harvest sprouting resistance in a white wheat cultivar Danby.
    Shao M; Bai G; Rife TW; Poland J; Lin M; Liu S; Chen H; Kumssa T; Fritz A; Trick H; Li Y; Zhang G
    Theor Appl Genet; 2018 Aug; 131(8):1683-1697. PubMed ID: 29860625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic and QTL analyses of seed dormancy and preharvest sprouting resistance in the wheat germplasm CN10955.
    Ogbonnaya FC; Imtiaz M; Ye G; Hearnden PR; Hernandez E; Eastwood RF; van Ginkel M; Shorter SC; Winchester JM
    Theor Appl Genet; 2008 May; 116(7):891-902. PubMed ID: 18368385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic dissection of stalk lodging-related traits using an IBM Syn10 DH population in maize across three environments (Zea mays L.).
    Zhang Y; Liang T; Chen M; Zhang Y; Wang T; Lin H; Rong T; Zou C; Liu P; Lee M; Pan G; Shen Y; Lübberstedt T
    Mol Genet Genomics; 2019 Oct; 294(5):1277-1288. PubMed ID: 31139941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.