BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 38038829)

  • 1. Deep learning models for automatic tumor segmentation and total tumor volume assessment in patients with colorectal liver metastases.
    Wesdorp NJ; Zeeuw JM; Postma SCJ; Roor J; van Waesberghe JHTM; van den Bergh JE; Nota IM; Moos S; Kemna R; Vadakkumpadan F; Ambrozic C; van Dieren S; van Amerongen MJ; Chapelle T; Engelbrecht MRW; Gerhards MF; Grunhagen D; van Gulik TM; Hermans JJ; de Jong KP; Klaase JM; Liem MSL; van Lienden KP; Molenaar IQ; Patijn GA; Rijken AM; Ruers TM; Verhoef C; de Wilt JHW; Marquering HA; Stoker J; Swijnenburg RJ; Punt CJA; Huiskens J; Kazemier G
    Eur Radiol Exp; 2023 Dec; 7(1):75. PubMed ID: 38038829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Prognostic Value of Total Tumor Volume Response Compared With RECIST1.1 in Patients With Initially Unresectable Colorectal Liver Metastases Undergoing Systemic Treatment.
    Wesdorp NJ; Bolhuis K; Roor J; van Waesberghe JTM; van Dieren S; van Amerongen MJ; Chapelle T; Dejong CHC; Engelbrecht MRW; Gerhards MF; Grunhagen D; van Gulik TM; Hermans JJ; de Jong KP; Klaase JM; Liem MSL; van Lienden KP; Molenaar IQ; Patijn GA; Rijken AM; Ruers TM; Verhoef C; de Wilt JHW; Swijnenburg RJ; Punt CJA; Huiskens J; Kazemier G
    Ann Surg Open; 2021 Dec; 2(4):e103. PubMed ID: 37637880
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interobserver Variability in CT-based Morphologic Tumor Response Assessment of Colorectal Liver Metastases.
    Wesdorp NJ; Kemna R; Bolhuis K; van Waesberghe JHTM; Nota IMGC; Struik F; Oulad Abdennabi I; Phoa SSKS; van Dieren S; van Amerongen MJ; Chapelle T; Dejong CHC; Engelbrecht MRW; Gerhards MF; Grünhagen D; van Gulik TM; Hermans JJ; de Jong KP; Klaase JM; Liem MSL; van Lienden KP; Molenaar IQ; Patijn GA; Rijken AM; Ruers TM; Verhoef C; de Wilt JHW; Swijnenburg RJ; Punt CJA; Huiskens J; Stoker J; Kazemier G;
    Radiol Imaging Cancer; 2022 May; 4(3):e210105. PubMed ID: 35522139
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Layered deep learning for automatic mandibular segmentation in cone-beam computed tomography.
    Verhelst PJ; Smolders A; Beznik T; Meewis J; Vandemeulebroucke A; Shaheen E; Van Gerven A; Willems H; Politis C; Jacobs R
    J Dent; 2021 Nov; 114():103786. PubMed ID: 34425172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic segmentation of hepatic metastases on DWI images based on a deep learning method: assessment of tumor treatment response according to the RECIST 1.1 criteria.
    Liu X; Wang R; Zhu Z; Wang K; Gao Y; Li J; Zhang Y; Wang X; Zhang X; Wang X
    BMC Cancer; 2022 Dec; 22(1):1285. PubMed ID: 36476181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying Genetic Mutation Status in Patients with Colorectal Cancer Liver Metastases Using Radiomics-Based Machine-Learning Models.
    Wesdorp N; Zeeuw M; van der Meulen D; van 't Erve I; Bodalal Z; Roor J; van Waesberghe JH; Moos S; van den Bergh J; Nota I; van Dieren S; Stoker J; Meijer G; Swijnenburg RJ; Punt C; Huiskens J; Beets-Tan R; Fijneman R; Marquering H; Kazemier G; On Behalf Of The Dutch Colorectal Cancer Group Liver Expert Panel
    Cancers (Basel); 2023 Nov; 15(23):. PubMed ID: 38067353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clinical evaluation of deep learning-based automatic clinical target volume segmentation: a single-institution multi-site tumor experience.
    Hou Z; Gao S; Liu J; Yin Y; Zhang L; Han Y; Yan J; Li S
    Radiol Med; 2023 Oct; 128(10):1250-1261. PubMed ID: 37597126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep learning for segmentation of the cervical cancer gross tumor volume on magnetic resonance imaging for brachytherapy.
    Rodríguez Outeiral R; González PJ; Schaake EE; van der Heide UA; Simões R
    Radiat Oncol; 2023 May; 18(1):91. PubMed ID: 37248490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinguishing pure histopathological growth patterns of colorectal liver metastases on CT using deep learning and radiomics: a pilot study.
    Starmans MPA; Buisman FE; Renckens M; Willemssen FEJA; van der Voort SR; Groot Koerkamp B; Grünhagen DJ; Niessen WJ; Vermeulen PB; Verhoef C; Visser JJ; Klein S
    Clin Exp Metastasis; 2021 Oct; 38(5):483-494. PubMed ID: 34533669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Primary Central Nervous System Lymphoma: Clinical Evaluation of Automated Segmentation on Multiparametric MRI Using Deep Learning.
    Pennig L; Hoyer UCI; Goertz L; Shahzad R; Persigehl T; Thiele F; Perkuhn M; Ruge MI; Kabbasch C; Borggrefe J; Caldeira L; Laukamp KR
    J Magn Reson Imaging; 2021 Jan; 53(1):259-268. PubMed ID: 32662130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic segmentation of hepatocellular carcinoma on dynamic contrast-enhanced MRI based on deep learning.
    Luo X; Li P; Chen H; Zhou K; Piao S; Yang L; Hu B; Geng D
    Phys Med Biol; 2024 Mar; 69(6):. PubMed ID: 38330492
    [No Abstract]   [Full Text] [Related]  

  • 12. Deep-learning-based image registration and automatic segmentation of organs-at-risk in cone-beam CT scans from high-dose radiation treatment of pancreatic cancer.
    Han X; Hong J; Reyngold M; Crane C; Cuaron J; Hajj C; Mann J; Zinovoy M; Greer H; Yorke E; Mageras G; Niethammer M
    Med Phys; 2021 Jun; 48(6):3084-3095. PubMed ID: 33905539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic gross tumor segmentation of canine head and neck cancer using deep learning and cross-species transfer learning.
    Groendahl AR; Huynh BN; Tomic O; Søvik Å; Dale E; Malinen E; Skogmo HK; Futsaether CM
    Front Vet Sci; 2023; 10():1143986. PubMed ID: 37026102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Abnormal lung quantification in chest CT images of COVID-19 patients with deep learning and its application to severity prediction.
    Shan F; Gao Y; Wang J; Shi W; Shi N; Han M; Xue Z; Shen D; Shi Y
    Med Phys; 2021 Apr; 48(4):1633-1645. PubMed ID: 33225476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A deep-learning approach for segmentation of liver tumors in magnetic resonance imaging using UNet+.
    Wang J; Peng Y; Jing S; Han L; Li T; Luo J
    BMC Cancer; 2023 Nov; 23(1):1060. PubMed ID: 37923988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep learning from dual-energy information for whole-heart segmentation in dual-energy and single-energy non-contrast-enhanced cardiac CT.
    Bruns S; Wolterink JM; Takx RAP; van Hamersvelt RW; Suchá D; Viergever MA; Leiner T; Išgum I
    Med Phys; 2020 Oct; 47(10):5048-5060. PubMed ID: 32786071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polycystic liver: automatic segmentation using deep learning on CT is faster and as accurate compared to manual segmentation.
    Cayot B; Milot L; Nempont O; Vlachomitrou AS; Langlois-Jacques C; Dumortier J; Boillot O; Arnaud K; Barten TRM; Drenth JPH; Valette PJ
    Eur Radiol; 2022 Jul; 32(7):4780-4790. PubMed ID: 35142898
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated MRI liver segmentation for anatomical segmentation, liver volumetry, and the extraction of radiomics.
    Gross M; Huber S; Arora S; Ze'evi T; Haider SP; Kucukkaya AS; Iseke S; Kuhn TN; Gebauer B; Michallek F; Dewey M; Vilgrain V; Sartoris R; Ronot M; Jaffe A; Strazzabosco M; Chapiro J; Onofrey JA
    Eur Radiol; 2024 Jan; ():. PubMed ID: 38217704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of total tumor volume reduction ratio in initially unresectable colorectal liver metastases after first-line systemic treatment.
    He J; Li W; Zhou J; Sun H; Zhou C; Liu Y; Quan T; Fan W; Pan Z; Lin J; Peng J
    Eur J Radiol; 2023 Aug; 165():110950. PubMed ID: 37437437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep learning-assisted magnetic resonance imaging prediction of tumor response to chemotherapy in patients with colorectal liver metastases.
    Zhu HB; Xu D; Ye M; Sun L; Zhang XY; Li XT; Nie P; Xing BC; Sun YS
    Int J Cancer; 2021 Apr; 148(7):1717-1730. PubMed ID: 33284998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.