BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 38038843)

  • 1. Design Principles and Benefits of Spatially Explicit Models of Myofilament Function.
    Tanner BCW
    Methods Mol Biol; 2024; 2735():43-62. PubMed ID: 38038843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A spatially explicit nanomechanical model of the half-sarcomere: myofilament compliance affects Ca(2+)-activation.
    Chase PB; Macpherson JM; Daniel TL
    Ann Biomed Eng; 2004 Nov; 32(11):1559-68. PubMed ID: 15636115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The spatial distribution of thin filament activation influences force development and myosin activity in computational models of muscle contraction.
    Fenwick AJ; Wood AM; Tanner BCW
    Arch Biochem Biophys; 2021 May; 703():108855. PubMed ID: 33781771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Filament compliance influences cooperative activation of thin filaments and the dynamics of force production in skeletal muscle.
    Tanner BC; Daniel TL; Regnier M
    PLoS Comput Biol; 2012; 8(5):e1002506. PubMed ID: 22589710
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of myofilament force and loaded shortening by skeletal myosin binding protein C.
    Robinett JC; Hanft LM; Geist J; Kontrogianni-Konstantopoulos A; McDonald KS
    J Gen Physiol; 2019 May; 151(5):645-659. PubMed ID: 30705121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insights into the kinetics of Ca2+-regulated contraction and relaxation from myofibril studies.
    Stehle R; Solzin J; Iorga B; Poggesi C
    Pflugers Arch; 2009 Jun; 458(2):337-57. PubMed ID: 19165498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sarcomere lattice geometry influences cooperative myosin binding in muscle.
    Tanner BC; Daniel TL; Regnier M
    PLoS Comput Biol; 2007 Jul; 3(7):e115. PubMed ID: 17630823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hypothesis: Single Actomyosin Properties Account for Ensemble Behavior in Active Muscle Shortening and Isometric Contraction.
    Månsson A
    Int J Mol Sci; 2020 Nov; 21(21):. PubMed ID: 33182367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A simple model with myofilament compliance predicts activation-dependent crossbridge kinetics in skinned skeletal fibers.
    Martyn DA; Chase PB; Regnier M; Gordon AM
    Biophys J; 2002 Dec; 83(6):3425-34. PubMed ID: 12496109
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and functional impact of troponin C-mediated Ca
    Gonzalez-Martinez D; Johnston JR; Landim-Vieira M; Ma W; Antipova O; Awan O; Irving TC; Bryant Chase P; Pinto JR
    J Mol Cell Cardiol; 2018 Oct; 123():26-37. PubMed ID: 30138628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of titin in eccentric muscle contraction.
    Herzog W
    J Exp Biol; 2014 Aug; 217(Pt 16):2825-33. PubMed ID: 25122914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FiberSim: A flexible open-source model of myofilament-level contraction.
    Kosta S; Colli D; Ye Q; Campbell KS
    Biophys J; 2022 Jan; 121(2):175-182. PubMed ID: 34932957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonlinear myofilament regulatory processes affect frequency-dependent muscle fiber stiffness.
    Campbell KB; Razumova MV; Kirkpatrick RD; Slinker BK
    Biophys J; 2001 Oct; 81(4):2278-96. PubMed ID: 11566798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The three filament model of skeletal muscle stability and force production.
    Herzog W; Leonard T; Joumaa V; DuVall M; Panchangam A
    Mol Cell Biomech; 2012 Sep; 9(3):175-91. PubMed ID: 23285733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Myofilaments: Movers and Rulers of the Sarcomere.
    Lin BL; Song T; Sadayappan S
    Compr Physiol; 2017 Mar; 7(2):675-692. PubMed ID: 28333386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Random myosin loss along thick-filaments increases myosin attachment time and the proportion of bound myosin heads to mitigate force decline in skeletal muscle.
    Tanner BC; McNabb M; Palmer BM; Toth MJ; Miller MS
    Arch Biochem Biophys; 2014 Jun; 552-553():117-27. PubMed ID: 24486373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Sliding Filament Theory Since Andrew Huxley: Multiscale and Multidisciplinary Muscle Research.
    Powers JD; Malingen SA; Regnier M; Daniel TL
    Annu Rev Biophys; 2021 May; 50():373-400. PubMed ID: 33637009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A two-segment model for thin filament architecture in skeletal muscle.
    Gokhin DS; Fowler VM
    Nat Rev Mol Cell Biol; 2013 Feb; 14(2):113-9. PubMed ID: 23299957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The force-length relationship of mechanically isolated sarcomeres.
    Herzog W; Joumaa V; Leonard TR
    Adv Exp Med Biol; 2010; 682():141-61. PubMed ID: 20824524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of titin isoform on length dependent activation and cross-bridge cycling kinetics in rat skeletal muscle.
    Mateja RD; Greaser ML; de Tombe PP
    Biochim Biophys Acta; 2013 Apr; 1833(4):804-11. PubMed ID: 22951219
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.