These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 38038907)

  • 1. Life cycle assessment of electric vehicles: a systematic review of literature.
    Das PK; Bhat MY; Sajith S
    Environ Sci Pollut Res Int; 2024 Jan; 31(1):73-89. PubMed ID: 38038907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Environmental life cycle assessment of battery electric vehicles from the current and future energy mix perspective.
    Shafique M; Luo X
    J Environ Manage; 2022 Feb; 303():114050. PubMed ID: 34872799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A review of the life cycle assessment of electric vehicles: Considering the influence of batteries.
    Xia X; Li P
    Sci Total Environ; 2022 Mar; 814():152870. PubMed ID: 34990672
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Well-to-wheel greenhouse gas emissions of electric versus combustion vehicles from 2018 to 2030 in the US.
    Challa R; Kamath D; Anctil A
    J Environ Manage; 2022 Apr; 308():114592. PubMed ID: 35121453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Research on carbon reduction potential of electric vehicles for low-carbon transportation and its influencing factors].
    Shi XQ; Li XN; Yang JX
    Huan Jing Ke Xue; 2013 Jan; 34(1):385-94. PubMed ID: 23487966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Life cycle assessment of battery electric vehicles: Implications of future electricity mix and different battery end-of-life management.
    Koroma MS; Costa D; Philippot M; Cardellini G; Hosen MS; Coosemans T; Messagie M
    Sci Total Environ; 2022 Jul; 831():154859. PubMed ID: 35358517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Current status and perspectives on recycling of end-of-life battery of electric vehicle in Korea (Republic of).
    Choi Y; Rhee SW
    Waste Manag; 2020 Apr; 106():261-270. PubMed ID: 32241694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Review of the Fuel Saving, Life Cycle GHG Emission, and Ownership Cost Impacts of Lightweighting Vehicles with Different Powertrains.
    Luk JM; Kim HC; De Kleine R; Wallington TJ; MacLean HL
    Environ Sci Technol; 2017 Aug; 51(15):8215-8228. PubMed ID: 28714678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Environmental implication of electric vehicles in China.
    Huo H; Zhang Q; Wang MQ; Streets DG; He K
    Environ Sci Technol; 2010 Jul; 44(13):4856-61. PubMed ID: 20496930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The alternative path for fossil oil: Electric vehicles or hydrogen fuel cell vehicles?
    Zhang W; Fang X; Sun C
    J Environ Manage; 2023 Sep; 341():118019. PubMed ID: 37178543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fuel cell-based electric vehicles technologies and challenges.
    Selmi T; Khadhraoui A; Cherif A
    Environ Sci Pollut Res Int; 2022 Nov; 29(52):78121-78131. PubMed ID: 36173525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of the state of Lithium-Sulphur and lithium-ion batteries applied to electromobility.
    Benveniste G; Rallo H; Canals Casals L; Merino A; Amante B
    J Environ Manage; 2018 Nov; 226():1-12. PubMed ID: 30103198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Comparative life cycle environmental assessment between electric taxi and gasoline taxi in Beijing].
    Shi XQ; Sun ZX; Li XN; Li JX; Yang JX
    Huan Jing Ke Xue; 2015 Mar; 36(3):1105-16. PubMed ID: 25929083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The impact of ambient temperature and powertrains of SUVs on the environment in Slovakia during the use phase.
    Sečkár M; Schwarz M
    Environ Monit Assess; 2024 Jul; 196(8):704. PubMed ID: 38967806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Life cycle environmental impact of high-capacity lithium ion battery with silicon nanowires anode for electric vehicles.
    Li B; Gao X; Li J; Yuan C
    Environ Sci Technol; 2014; 48(5):3047-55. PubMed ID: 24483341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An assessment of electric vehicles: technology, infrastructure requirements, greenhouse-gas emissions, petroleum use, material use, lifetime cost, consumer acceptance and policy initiatives.
    Delucchi MA; Yang C; Burke AF; Ogden JM; Kurani K; Kessler J; Sperling D
    Philos Trans A Math Phys Eng Sci; 2014 Jan; 372(2006):20120325. PubMed ID: 24298079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reducing Greenhouse Gas Emissions from U.S. Light-Duty Transport in Line with the 2 °C Target.
    Zhu Y; Skerlos S; Xu M; Cooper DR
    Environ Sci Technol; 2021 Jul; 55(13):9326-9338. PubMed ID: 34106694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Review on Electric and Fuel Cell Vehicle Anatomy, Technology Evolution and Policy Drivers towards EVs and FCEVs Market Propagation.
    Chandran M; Palanisamy K; Benson D; Sundaram S
    Chem Rec; 2022 Feb; 22(2):e202100235. PubMed ID: 34796621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of regional temperature on the adoption of electric vehicles: an empirical study based on 20 provinces in China.
    Li X; Zhao X; Xue D; Tian Q
    Environ Sci Pollut Res Int; 2023 Jan; 30(5):11443-11457. PubMed ID: 36094712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Second life batteries lifespan: Rest of useful life and environmental analysis.
    Casals LC; Amante García B; Canal C
    J Environ Manage; 2019 Feb; 232():354-363. PubMed ID: 30496965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.