BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 38038928)

  • 21. Proteome-Derived Peptide Libraries for Deep Specificity Profiling of N-terminal Modification Reagents.
    Bridge HN; Weeks AM
    Curr Protoc; 2023 Jun; 3(6):e798. PubMed ID: 37283519
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metadegradomics: toward in vivo quantitative degradomics of proteolytic post-translational modifications of the cancer proteome.
    Doucet A; Butler GS; Rodríguez D; Prudova A; Overall CM
    Mol Cell Proteomics; 2008 Oct; 7(10):1925-51. PubMed ID: 18596063
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Qualitative improvement and quantitative assessment of N-terminomics.
    Guryča V; Lamerz J; Ducret A; Cutler P
    Proteomics; 2012 Apr; 12(8):1207-16. PubMed ID: 22577022
    [TBL] [Abstract][Full Text] [Related]  

  • 24. N-terminomics - its past and recent advancements.
    Kaushal P; Lee C
    J Proteomics; 2021 Feb; 233():104089. PubMed ID: 33359939
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Simplified high yield TAILS terminomics using a new HPG-ALD 800K-2000 polymer with precipitation.
    Solis N; Parambath A; Abbina S; Kizhakkedathu J; Overall CM
    Methods Enzymol; 2019; 626():429-446. PubMed ID: 31606086
    [TBL] [Abstract][Full Text] [Related]  

  • 26. TAILS N-Terminomics and Proteomics Show Protein Degradation Dominates over Proteolytic Processing by Cathepsins in Pancreatic Tumors.
    Prudova A; Gocheva V; Auf dem Keller U; Eckhard U; Olson OC; Akkari L; Butler GS; Fortelny N; Lange PF; Mark JC; Joyce JA; Overall CM
    Cell Rep; 2016 Aug; 16(6):1762-1773. PubMed ID: 27477282
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Protease Substrate Profiling by N-Terminal COFRADIC.
    Staes A; Van Damme P; Timmerman E; Ruttens B; Stes E; Gevaert K; Impens F
    Methods Mol Biol; 2017; 1574():51-76. PubMed ID: 28315243
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CLIPPER: an add-on to the Trans-Proteomic Pipeline for the automated analysis of TAILS N-terminomics data.
    auf dem Keller U; Overall CM
    Biol Chem; 2012 Dec; 393(12):1477-83. PubMed ID: 23667905
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Protease specificity profiling by tandem mass spectrometry using proteome-derived peptide libraries.
    Schilling O; auf dem Keller U; Overall CM
    Methods Mol Biol; 2011; 753():257-72. PubMed ID: 21604128
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In vivo assessment of protease dynamics in cutaneous wound healing by degradomics analysis of porcine wound exudates.
    Sabino F; Hermes O; Egli FE; Kockmann T; Schlage P; Croizat P; Kizhakkedathu JN; Smola H; auf dem Keller U
    Mol Cell Proteomics; 2015 Feb; 14(2):354-70. PubMed ID: 25516628
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of Carboxypeptidase Substrates by C-Terminal COFRADIC.
    Tanco S; Aviles FX; Gevaert K; Lorenzo J; Van Damme P
    Methods Mol Biol; 2017; 1574():115-133. PubMed ID: 28315247
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Global Profiling of Proteolysis from the Mitochondrial Amino Terminome during Early Intrinsic Apoptosis Prior to Caspase-3 Activation.
    Marshall NC; Klein T; Thejoe M; von Krosigk N; Kizhakkedathu J; Finlay BB; Overall CM
    J Proteome Res; 2018 Dec; 17(12):4279-4296. PubMed ID: 30371095
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A protocol for analyzing the protein terminome of human cancer cell line culture supernatants.
    Tsumagari K; Chang CH; Ishihama Y
    STAR Protoc; 2021 Sep; 2(3):100682. PubMed ID: 34377995
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Doublet N-Terminal Oriented Proteomics for N-Terminomics and Proteolytic Processing Identification.
    Westermann B; Jacome ASV; Rompais M; Carapito C; Schaeffer-Reiss C
    Methods Mol Biol; 2017; 1574():77-90. PubMed ID: 28315244
    [TBL] [Abstract][Full Text] [Related]  

  • 35. N-terminomics reveals control of Arabidopsis seed storage proteins and proteases by the Arg/N-end rule pathway.
    Zhang H; Gannon L; Hassall KL; Deery MJ; Gibbs DJ; Holdsworth MJ; van der Hoorn RAL; Lilley KS; Theodoulou FL
    New Phytol; 2018 May; 218(3):1106-1126. PubMed ID: 29168982
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Combination of SCX Fractionation and Charge-Reversal Derivatization Facilitates the Identification of Nontryptic Peptides in C-Terminomics.
    Kaleja P; Helbig AO; Tholey A
    J Proteome Res; 2019 Jul; 18(7):2954-2964. PubMed ID: 31195796
    [TBL] [Abstract][Full Text] [Related]  

  • 37. System-Wide Profiling of Protein Amino Termini from Formalin-Fixed, Paraffin-Embedded Tissue Specimens for the Identification of Novel Substrates.
    Lai ZW; Schilling O
    Methods Mol Biol; 2017; 1574():105-114. PubMed ID: 28315246
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Current trends and challenges in proteomic identification of protease substrates.
    Vizovišek M; Vidmar R; Fonović M; Turk B
    Biochimie; 2016 Mar; 122():77-87. PubMed ID: 26514758
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Proteomic techniques and activity-based probes for the system-wide study of proteolysis.
    auf dem Keller U; Schilling O
    Biochimie; 2010 Nov; 92(11):1705-14. PubMed ID: 20493233
    [TBL] [Abstract][Full Text] [Related]  

  • 40. N- and C-terminal degradomics: new approaches to reveal biological roles for plant proteases from substrate identification.
    Huesgen PF; Overall CM
    Physiol Plant; 2012 May; 145(1):5-17. PubMed ID: 22023699
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.