BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 38038941)

  • 21. 3D Microenvironment Stiffness Regulates Tumor Spheroid Growth and Mechanics via p21 and ROCK.
    Taubenberger AV; Girardo S; Träber N; Fischer-Friedrich E; Kräter M; Wagner K; Kurth T; Richter I; Haller B; Binner M; Hahn D; Freudenberg U; Werner C; Guck J
    Adv Biosyst; 2019 Sep; 3(9):e1900128. PubMed ID: 32648654
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Leading malignant cells initiate collective epithelial cell invasion in a three-dimensional heterotypic tumor spheroid model.
    Carey SP; Starchenko A; McGregor AL; Reinhart-King CA
    Clin Exp Metastasis; 2013 Jun; 30(5):615-30. PubMed ID: 23328900
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Glioblastoma spheroid growth and chemotherapeutic responses in single and dual-stiffness hydrogels.
    Bruns J; Egan T; Mercier P; Zustiak SP
    Acta Biomater; 2023 Jun; 163():400-414. PubMed ID: 35659918
    [TBL] [Abstract][Full Text] [Related]  

  • 24. MAME models for 4D live-cell imaging of tumor: microenvironment interactions that impact malignant progression.
    Sameni M; Anbalagan A; Olive MB; Moin K; Mattingly RR; Sloane BF
    J Vis Exp; 2012 Feb; (60):. PubMed ID: 22371028
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Digital microfluidics for spheroid-based invasion assays.
    Bender BF; Aijian AP; Garrell RL
    Lab Chip; 2016 Apr; 16(8):1505-13. PubMed ID: 27020962
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-throughput CRISPR-mediated 3D enrichment platform for functional interrogation of chemotherapeutic resistance.
    Grandhi TSP; To J; Romero A; Luna F; Barnes W; Walker J; Moran R; Newlin R; Miraglia L; Orth AP; Horman SR
    Biotechnol Bioeng; 2021 Aug; 118(8):3187-3199. PubMed ID: 34050941
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Circulating Peptidome and Tumor-Resident Proteolysis.
    Fan J; Ning B; Lyon CJ; Hu TY
    Enzymes; 2017; 42():1-25. PubMed ID: 29054266
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multicellular 3D Models to Study Tumour-Stroma Interactions.
    Colombo E; Cattaneo MG
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33562840
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fabrication Method of a High-Density Co-Culture Tumor-Stroma Platform to Study Cancer Progression.
    Saini H; Nikkhah M
    Methods Mol Biol; 2021; 2258():241-255. PubMed ID: 33340365
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Functional imaging of proteolysis: stromal and inflammatory cells increase tumor proteolysis.
    Sameni M; Dosescu J; Moin K; Sloane BF
    Mol Imaging; 2003 Jul; 2(3):159-75. PubMed ID: 14649059
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Assessing Advantages and Drawbacks of Rapidly Generated Ultra-Large 3D Breast Cancer Spheroids: Studies with Chemotherapeutics and Nanoparticles.
    Holub AR; Huo A; Patel K; Thakore V; Chhibber P; Erogbogbo F
    Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32575896
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pericellular proteolysis in cancer.
    Sevenich L; Joyce JA
    Genes Dev; 2014 Nov; 28(21):2331-47. PubMed ID: 25367033
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cell type-dependent pathogenic functions of overexpressed human cathepsin B in murine breast cancer progression.
    Bengsch F; Buck A; Günther SC; Seiz JR; Tacke M; Pfeifer D; von Elverfeldt D; Sevenich L; Hillebrand LE; Kern U; Sameni M; Peters C; Sloane BF; Reinheckel T
    Oncogene; 2014 Sep; 33(36):4474-84. PubMed ID: 24077280
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modelling the complex nature of the tumor microenvironment: 3D tumor spheroids as an evolving tool.
    Rodrigues DB; Reis RL; Pirraco RP
    J Biomed Sci; 2024 Jan; 31(1):13. PubMed ID: 38254117
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spatio-temporal modeling and live-cell imaging of proteolysis in the 4D microenvironment of breast cancer.
    Ji K; Sameni M; Osuala K; Moin K; Mattingly RR; Sloane BF
    Cancer Metastasis Rev; 2019 Sep; 38(3):445-454. PubMed ID: 31605250
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spheroid formation and invasion capacity are differentially influenced by co-cultures of fibroblast and macrophage cells in breast cancer.
    Rama-Esendagli D; Esendagli G; Yilmaz G; Guc D
    Mol Biol Rep; 2014 May; 41(5):2885-92. PubMed ID: 24469725
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Protease proteomics: revealing protease in vivo functions using systems biology approaches.
    Doucet A; Overall CM
    Mol Aspects Med; 2008 Oct; 29(5):339-58. PubMed ID: 18571712
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development and verification of a three-dimensional (3D) breast cancer tumor model composed of circulating tumor cell (CTC) subsets.
    Anil-Inevi M; Sağlam-Metiner P; Kabak EC; Gulce-Iz S
    Mol Biol Rep; 2020 Jan; 47(1):97-109. PubMed ID: 31583566
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multicellular spheroid based on a triple co-culture: A novel 3D model to mimic pancreatic tumor complexity.
    Lazzari G; Nicolas V; Matsusaki M; Akashi M; Couvreur P; Mura S
    Acta Biomater; 2018 Sep; 78():296-307. PubMed ID: 30099198
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Functional imaging of tumor proteolysis.
    Sloane BF; Sameni M; Podgorski I; Cavallo-Medved D; Moin K
    Annu Rev Pharmacol Toxicol; 2006; 46():301-15. PubMed ID: 16402907
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.