BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38039171)

  • 1. Rigorous a Posteriori Error Bounds for PDE-Defined PINNs.
    Hillebrecht B; Unger B
    IEEE Trans Neural Netw Learn Syst; 2023 Dec; PP():. PubMed ID: 38039171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Error estimates and physics informed augmentation of neural networks for thermally coupled incompressible Navier Stokes equations.
    Goraya S; Sobh N; Masud A
    Comput Mech; 2023 Aug; 72(2):267-289. PubMed ID: 37583614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An improved data-free surrogate model for solving partial differential equations using deep neural networks.
    Chen X; Chen R; Wan Q; Xu R; Liu J
    Sci Rep; 2021 Sep; 11(1):19507. PubMed ID: 34593943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gradient Statistics-Based Multi-Objective Optimization in Physics-Informed Neural Networks.
    Vemuri SK; Denzler J
    Sensors (Basel); 2023 Oct; 23(21):. PubMed ID: 37960365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic Weight Strategy of Physics-Informed Neural Networks for the 2D Navier-Stokes Equations.
    Li S; Feng X
    Entropy (Basel); 2022 Sep; 24(9):. PubMed ID: 36141140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting ocean pressure field with a physics-informed neural network.
    Yoon S; Park Y; Gerstoft P; Seong W
    J Acoust Soc Am; 2024 Mar; 155(3):2037-2049. PubMed ID: 38477613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Combination of Deep Neural Networks and Physics to Solve the Inverse Problem of Burger's Equation.
    Alkhadhr S; Almekkawy M
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4465-4468. PubMed ID: 34892210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of high-speed angiography HSA-derived boundary conditions and Physics Informed Neural Networks (PINNs) for comprehensive estimation of neurovascular hemodynamics.
    Williams KA; Shields A; Bhurwani MMS; Nagesh SVS; Bednarek DR; Rudin S; Ionita CN
    Proc SPIE Int Soc Opt Eng; 2023 Feb; 12463():. PubMed ID: 37424833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solving inverse problems in physics by optimizing a discrete loss: Fast and accurate learning without neural networks.
    Karnakov P; Litvinov S; Koumoutsakos P
    PNAS Nexus; 2024 Jan; 3(1):pgae005. PubMed ID: 38250513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-invasive Inference of Thrombus Material Properties with Physics-Informed Neural Networks.
    Yin M; Zheng X; Humphrey JD; Em Karniadakis G
    Comput Methods Appl Mech Eng; 2021 Mar; 375():. PubMed ID: 33414569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep learning-accelerated computational framework based on Physics Informed Neural Network for the solution of linear elasticity.
    Roy AM; Bose R; Sundararaghavan V; Arróyave R
    Neural Netw; 2023 May; 162():472-489. PubMed ID: 36966712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physics-informed kernel function neural networks for solving partial differential equations.
    Fu Z; Xu W; Liu S
    Neural Netw; 2024 Apr; 172():106098. PubMed ID: 38199153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Old and the New: Can Physics-Informed Deep-Learning Replace Traditional Linear Solvers?
    Markidis S
    Front Big Data; 2021; 4():669097. PubMed ID: 34870188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstructing Rayleigh-Bénard flows out of temperature-only measurements using Physics-Informed Neural Networks.
    Clark Di Leoni P; Agasthya L; Buzzicotti M; Biferale L
    Eur Phys J E Soft Matter; 2023 Mar; 46(3):16. PubMed ID: 36939938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Learning Traveling Solitary Waves Using Separable Gaussian Neural Networks.
    Xing S; Charalampidis EG
    Entropy (Basel); 2024 Apr; 26(5):. PubMed ID: 38785645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The New Simulation of Quasiperiodic Wave, Periodic Wave, and Soliton Solutions of the KdV-mKdV Equation via a Deep Learning Method.
    Zhang Y; Dong H; Sun J; Wang Z; Fang Y; Kong Y
    Comput Intell Neurosci; 2021; 2021():8548482. PubMed ID: 34868298
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wave Equation Modeling via Physics-Informed Neural Networks: Models of Soft and Hard Constraints for Initial and Boundary Conditions.
    Alkhadhr S; Almekkawy M
    Sensors (Basel); 2023 Mar; 23(5):. PubMed ID: 36904994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physics-informed neural networks and functional interpolation for stiff chemical kinetics.
    De Florio M; Schiassi E; Furfaro R
    Chaos; 2022 Jun; 32(6):063107. PubMed ID: 35778155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physics-informed attention-based neural network for hyperbolic partial differential equations: application to the Buckley-Leverett problem.
    Rodriguez-Torrado R; Ruiz P; Cueto-Felgueroso L; Green MC; Friesen T; Matringe S; Togelius J
    Sci Rep; 2022 May; 12(1):7557. PubMed ID: 35534639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationships between the A priori and A posteriori errors in nonlinear adaptive neural filters.
    Mandic DP; Chambers JA
    Neural Comput; 2000 Jun; 12(6):1285-92. PubMed ID: 10935712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.