These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38039173)

  • 1. Leveraging Predictions of Task-Related Latents for Interactive Visual Navigation.
    Shen J; Yuan L; Lu Y; Lyu S
    IEEE Trans Neural Netw Learn Syst; 2023 Dec; PP():. PubMed ID: 38039173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vision-Based Robot Navigation through Combining Unsupervised Learning and Hierarchical Reinforcement Learning.
    Zhou X; Bai T; Gao Y; Han Y
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30939807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visual Navigation With Multiple Goals Based on Deep Reinforcement Learning.
    Rao Z; Wu Y; Yang Z; Zhang W; Lu S; Lu W; Zha Z
    IEEE Trans Neural Netw Learn Syst; 2021 Dec; 32(12):5445-5455. PubMed ID: 33667168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Meta-Reinforcement Learning in Nonstationary and Nonparametric Environments.
    Bing Z; Knak L; Cheng L; Morin FO; Huang K; Knoll A
    IEEE Trans Neural Netw Learn Syst; 2024 Oct; 35(10):13604-13618. PubMed ID: 37224358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep imitation learning for 3D navigation tasks.
    Hussein A; Elyan E; Gaber MM; Jayne C
    Neural Comput Appl; 2018; 29(7):389-404. PubMed ID: 29576690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RL-DOVS: Reinforcement Learning for Autonomous Robot Navigation in Dynamic Environments.
    Mackay AK; Riazuelo L; Montano L
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple Self-Supervised Auxiliary Tasks for Target-Driven Visual Navigation Using Deep Reinforcement Learning.
    Zhang W; He L; Wang H; Yuan L; Xiao W
    Entropy (Basel); 2023 Jun; 25(7):. PubMed ID: 37509957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compact Goal Representation Learning via Information Bottleneck in Goal-Conditioned Reinforcement Learning.
    Zou Q; Suzuki E
    IEEE Trans Neural Netw Learn Syst; 2024 Jan; PP():. PubMed ID: 38190683
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Meta-Reinforcement Learning in Non-Stationary and Dynamic Environments.
    Bing Z; Lerch D; Huang K; Knoll A
    IEEE Trans Pattern Anal Mach Intell; 2023 Mar; 45(3):3476-3491. PubMed ID: 35737617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics-Adaptive Continual Reinforcement Learning via Progressive Contextualization.
    Zhang T; Lin Z; Wang Y; Ye D; Fu Q; Yang W; Wang X; Liang B; Yuan B; Li X
    IEEE Trans Neural Netw Learn Syst; 2024 Oct; 35(10):14588-14602. PubMed ID: 37285252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple memory systems as substrates for multiple decision systems.
    Doll BB; Shohamy D; Daw ND
    Neurobiol Learn Mem; 2015 Jan; 117():4-13. PubMed ID: 24846190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hierarchical clustering optimizes the tradeoff between compositionality and expressivity of task structures for flexible reinforcement learning.
    Liu RG; Frank MJ
    Artif Intell; 2022 Nov; 312():. PubMed ID: 36711165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vision-Language Navigation Policy Learning and Adaptation.
    Wang X; Huang Q; Celikyilmaz A; Gao J; Shen D; Wang YF; Wang WY; Zhang L
    IEEE Trans Pattern Anal Mach Intell; 2021 Dec; 43(12):4205-4216. PubMed ID: 32054568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective particle attention: Rapidly and flexibly selecting features for deep reinforcement learning.
    Blakeman S; Mareschal D
    Neural Netw; 2022 Jun; 150():408-421. PubMed ID: 35358888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. STACoRe: Spatio-temporal and action-based contrastive representations for reinforcement learning in Atari.
    Lee YJ; Kim J; Kwak M; Park YJ; Kim SB
    Neural Netw; 2023 Mar; 160():1-11. PubMed ID: 36587439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human-Guided Reinforcement Learning With Sim-to-Real Transfer for Autonomous Navigation.
    Wu J; Zhou Y; Yang H; Huang Z; Lv C
    IEEE Trans Pattern Anal Mach Intell; 2023 Dec; 45(12):14745-14759. PubMed ID: 37703148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploratory State Representation Learning.
    Merckling A; Perrin-Gilbert N; Coninx A; Doncieux S
    Front Robot AI; 2022; 9():762051. PubMed ID: 35237669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reinforcement learning approaches to hippocampus-dependent flexible spatial navigation.
    Tessereau C; O'Dea R; Coombes S; Bast T
    Brain Neurosci Adv; 2021; 5():2398212820975634. PubMed ID: 33954259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Room-Object Entity Prompting and Reasoning for Embodied Referring Expression.
    Gao C; Liu S; Chen J; Wang L; Wu Q; Li B; Tian Q
    IEEE Trans Pattern Anal Mach Intell; 2024 Feb; 46(2):994-1010. PubMed ID: 37871097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regularized Denoising Masked Visual Pretraining for Robust Embodied PointGoal Navigation.
    Peng J; Xu Y; Luo L; Liu H; Lu K; Liu J
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050615
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.