These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38039179)

  • 1. Magnetorheological Damper With Variable Displacement Permanent Magnet for Assisting the Transfer of Load in Lower Limb Exoskeleton.
    Song J; Zhu A; Tu Y; Zheng C; Cao G
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():43-52. PubMed ID: 38039179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and performance evaluation of a rotary magnetorheological damper for unmanned vehicle suspension systems.
    Lee JH; Han C; Ahn D; Lee JK; Park SH; Park S
    ScientificWorldJournal; 2013; 2013():894016. PubMed ID: 23533366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive interaction torque-based AAN control for lower limb rehabilitation exoskeleton.
    Wang Y; Wang H; Tian Y
    ISA Trans; 2022 Sep; 128(Pt A):184-197. PubMed ID: 34716010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design optimization and experimental evaluation of a large capacity magnetorheological damper with annular and radial fluid gaps.
    Abdalaziz M; Sedaghati R; Vatandoost H
    J Intell Mater Syst Struct; 2023 Aug; 34(14):1646-1663. PubMed ID: 37521729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and Control of Upper Limb Rehabilitation Training Robot Based on a Magnetorheological Joint Damper.
    Zhu J; Hu H; Zhao W; Yang J; Ouyang Q
    Micromachines (Basel); 2024 Feb; 15(3):. PubMed ID: 38542548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic Analysis of Sphere-Like Iron Particles Based Magnetorheological Damper for Waveform-Generating Test System.
    Oh JS; Shul CW; Kim TH; Lee TH; Son SW; Choi SB
    Int J Mol Sci; 2020 Feb; 21(3):. PubMed ID: 32050496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of Damping Characteristics of Magnetorheological Damper under Impact Load.
    Sun M; Li X; Zhou Z; Zhu Q; Liu B; Chen X; Wang J; Zhang G; Cai S
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Semiactive Knee Orthotic Using a MR Damper and a Smart Insole to Control the Damping Force Sensing the Plantar Pressure.
    Alvarado-Rivera D; Niño-Suárez PA; Corona-Ramírez LG
    Front Neurorobot; 2022; 16():790020. PubMed ID: 35711282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of a Payload Adjustment Device for an Unpowered Lower-Limb Exoskeleton.
    Yun J; Kang O; Joe HM
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34208291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Novel Exoskeleton System Based on Magnetorheological Fluid for Tremor Suppression of Wrist Joints.
    Yi A; Zahedi A; Wang Y; Tan UX; Zhang D
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():1115-1120. PubMed ID: 31374779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and Evaluation of Torque Compensation Controllers for a Lower Extremity Exoskeleton.
    Zhou X; Chen X
    J Biomech Eng; 2021 Jan; 143(1):. PubMed ID: 32975567
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and Analysis of a Hybrid Annular Radial Magnetorheological Damper for Semi-Active In-Wheel Motor Suspension.
    Munyaneza O; Turabimana P; Oh JS; Choi SB; Sohn JW
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Soft Exoskeleton for Tremor Suppression Equipped with Flexible Semiactive Actuator.
    Zahedi A; Zhang B; Yi A; Zhang D
    Soft Robot; 2021 Aug; 8(4):432-447. PubMed ID: 32822240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Material Characterization of a Magnetorheological Fluid Subjected to Long-Term Operation in Damper.
    Utami D; ; Mazlan SA; Imaduddin F; Nordin NA; Bahiuddin I; Abdul Aziz SA; Mohamad N; Choi SB
    Materials (Basel); 2018 Nov; 11(11):. PubMed ID: 30404193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterizing the relationship between peak assistance torque and metabolic cost reduction during running with ankle exoskeletons.
    Miller DE; Tan GR; Farina EM; Sheets-Singer AL; Collins SH
    J Neuroeng Rehabil; 2022 May; 19(1):46. PubMed ID: 35549977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. BioMot exoskeleton - Towards a smart wearable robot for symbiotic human-robot interaction.
    Bacek T; Moltedo M; Langlois K; Prieto GA; Sanchez-Villamanan MC; Gonzalez-Vargas J; Vanderborght B; Lefeber D; Moreno JC
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1666-1671. PubMed ID: 28814059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Walking Strategies and Performance Evaluation for Human-Exoskeleton Systems under Admittance Control.
    Liang C; Hsiao T
    Sensors (Basel); 2020 Aug; 20(15):. PubMed ID: 32759803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Research on simulation and optimal design of a miniature magnetorheological fluid damper used in wearable rehabilitation training system].
    Xie S; Yi W; Yang M; Chen Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2022 Dec; 39(6):1133-1139. PubMed ID: 36575082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Research on Current Drive System of Magnetorheological Damper Based on Fuzzy PI Control.
    Li W; Liang H; Xia D; Fu J; Luo L; Yu M
    Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanical modeling and load-carrying simulation of lower limb exoskeleton.
    Zhu Y; Zhang G; Zhang C; Liu G; Zhao J
    Biomed Mater Eng; 2015; 26 Suppl 1():S729-38. PubMed ID: 26406068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.