These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38039179)

  • 21. An experimental comparison of the relative benefits of work and torque assistance in ankle exoskeletons.
    Jackson RW; Collins SH
    J Appl Physiol (1985); 2015 Sep; 119(5):541-57. PubMed ID: 26159764
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Simulating the effect of ankle plantarflexion and inversion-eversion exoskeleton torques on center of mass kinematics during walking.
    Bianco NA; Collins SH; Liu K; Delp SL
    PLoS Comput Biol; 2023 Aug; 19(8):e1010712. PubMed ID: 37549183
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multi-Objective Optimization Design and Performance Comparison of Magnetorheological Torsional Vibration Absorbers of Different Configurations.
    Liu G; Hu H; Ouyang Q; Zhang F
    Materials (Basel); 2023 Apr; 16(8):. PubMed ID: 37110006
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanics and energetics of post-stroke walking aided by a powered ankle exoskeleton with speed-adaptive myoelectric control.
    McCain EM; Dick TJM; Giest TN; Nuckols RW; Lewek MD; Saul KR; Sawicki GS
    J Neuroeng Rehabil; 2019 May; 16(1):57. PubMed ID: 31092269
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modulation of shoulder muscle and joint function using a powered upper-limb exoskeleton.
    Wu W; Fong J; Crocher V; Lee PVS; Oetomo D; Tan Y; Ackland DC
    J Biomech; 2018 Apr; 72():7-16. PubMed ID: 29506759
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Double closed-loop cascade control for lower limb exoskeleton with elastic actuation.
    Zhu Y; Zheng T; Jin H; Yang J; Zhao J
    Technol Health Care; 2015; 24 Suppl 1():S113-22. PubMed ID: 26409545
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Research on exoskeleton compliance control strategy based on dual interaction torque split phase control method.
    Liao L; Zhang G; Hu M
    Technol Health Care; 2024 May; ():. PubMed ID: 38820036
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of an unpowered ankle exoskeleton for walking assist.
    Leclair J; Pardoel S; Helal A; Doumit M
    Disabil Rehabil Assist Technol; 2020 Jan; 15(1):1-13. PubMed ID: 30132353
    [No Abstract]   [Full Text] [Related]  

  • 29. Biomechanical design of escalading lower limb exoskeleton with novel linkage joints.
    Zhang G; Liu G; Ma S; Wang T; Zhao J; Zhu Y
    Technol Health Care; 2017 Jul; 25(S1):267-273. PubMed ID: 28582915
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Finite element analysis of lower limb exoskeleton during sit-to-stand transition.
    K U; R V
    Comput Methods Biomech Biomed Engin; 2021 Oct; 24(13):1419-1425. PubMed ID: 33687282
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Effects of Incline Level on Optimized Lower-Limb Exoskeleton Assistance: A Case Series.
    Franks PW; Bryan GM; Reyes R; O'Donovan MP; Gregorczyk KN; Collins SH
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2494-2505. PubMed ID: 35930513
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Effects of ankle exoskeleton assistance during human walking on lower limb muscle contractions and coordination patterns].
    Wang W; Ding J; Wang Y; Liu Y; Zhang J; Liu J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2022 Feb; 39(1):75-83. PubMed ID: 35231968
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design of the Clutched Variable Parallel Elastic Actuator (CVPEA) for Lower Limb Exoskeletons.
    Li Y; Li Z; Penzlin B; Tang Z; Liu Y; Guan X; Ji L; Leonhardt S
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4436-4439. PubMed ID: 31946850
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Design and support performance evaluation of medical multi-position auxiliary support exoskeleton mechanism].
    Qi K; Yin Z; Zhang J; Song J; Qiao G
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2024 Apr; 41(2):295-303. PubMed ID: 38686410
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Knee Compliance Reduces Peak Swing Phase Collision Forces in a Lower-Limb Exoskeleton Leg: A Test Bench Evaluation.
    Schrade SO; Menner M; Shirota C; Winiger P; Stutz A; Zeilinger MN; Lambercy O; Gassert R
    IEEE Trans Biomed Eng; 2021 Feb; 68(2):535-544. PubMed ID: 32746051
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Novel swing-assist un-motorized exoskeletons for gait training.
    Mankala KK; Banala SK; Agrawal SK
    J Neuroeng Rehabil; 2009 Jul; 6():24. PubMed ID: 19575808
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A disc-type magneto-rheologic fluid damper.
    Zhu CS
    J Zhejiang Univ Sci; 2003; 4(5):514-9. PubMed ID: 12958708
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Design of a lightweight, tethered, torque-controlled knee exoskeleton.
    Witte KA; Fatschel AM; Collins SH
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1646-1653. PubMed ID: 28814056
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Heuristic-Based Ankle Exoskeleton Control for Co-Adaptive Assistance of Human Locomotion.
    Jackson RW; Collins SH
    IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2059-2069. PubMed ID: 31425120
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Design and evaluation of a modular lower limb exoskeleton for rehabilitation.
    Dos Santos WM; Nogueira SL; de Oliveira GC; Pena GG; Siqueira AAG
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():447-451. PubMed ID: 28813860
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.