These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 38039179)
41. Design and analysis of a lightweight lower extremity exoskeleton with novel compliant ankle joints. He Y; Liu J; Li F; Cao W; Wu X Technol Health Care; 2022; 30(4):881-894. PubMed ID: 34657860 [TBL] [Abstract][Full Text] [Related]
43. Lower Limb Exoskeleton for Rehabilitation with Flexible Joints and Movement Routines Commanded by Electromyography and Baropodometry Sensors. Rosales-Luengas Y; Espinosa-Espejel KI; Lopéz-Gutiérrez R; Salazar S; Lozano R Sensors (Basel); 2023 Jun; 23(11):. PubMed ID: 37299979 [TBL] [Abstract][Full Text] [Related]
44. Model-based control for exoskeletons with series elastic actuators evaluated on sit-to-stand movements. Vantilt J; Tanghe K; Afschrift M; Bruijnes AKBD; Junius K; Geeroms J; Aertbeliën E; De Groote F; Lefeber D; Jonkers I; De Schutter J J Neuroeng Rehabil; 2019 Jun; 16(1):65. PubMed ID: 31159874 [TBL] [Abstract][Full Text] [Related]
45. Template model inspired leg force feedback based control can assist human walking. Zhao G; Sharbafi M; Vlutters M; van Asseldonk E; Seyfarth A IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():473-478. PubMed ID: 28813865 [TBL] [Abstract][Full Text] [Related]
46. Design and analysis of a passive exoskeleton with its hip joint energy-storage. Hu S; Chen W; Xiong X; Sun X; He C Proc Inst Mech Eng H; 2023 Sep; 237(9):1039-1051. PubMed ID: 37571990 [TBL] [Abstract][Full Text] [Related]
47. Rehabilitation exoskeleton torque control based on PSO-RBFNN optimization. Li J; Tai Y; Meng F PLoS One; 2023; 18(8):e0285453. PubMed ID: 37552687 [TBL] [Abstract][Full Text] [Related]
48. Exoskeleton design utilizing foot-strike energy for enhancing the climbing ability of the wearer. Ma J; Sun D Proc Inst Mech Eng H; 2023 Jan; 237(1):49-60. PubMed ID: 36468560 [TBL] [Abstract][Full Text] [Related]
49. Co-Ex: A Torque-Controllable Lower Body Exoskeleton for Dependable Human-Robot Co-existence. Yildirim MC; Kansizoglu AT; Emre S; Derman M; Coruk S; Soliman AF; Sendur P; Ugurlu B IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():605-610. PubMed ID: 31374697 [TBL] [Abstract][Full Text] [Related]
50. Integration and Testing of a High-Torque Servo-Driven Joint and Its Electronic Controller with Application in a Prototype Upper Limb Exoskeleton. Vélez-Guerrero MA; Callejas-Cuervo M; Mazzoleni S Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833796 [TBL] [Abstract][Full Text] [Related]
51. Biomechanical and Physiological Evaluation of a Multi-Joint Exoskeleton with Active-Passive Assistance for Walking. Cao W; Zhang Z; Chen C; He Y; Wang D; Wu X Biosensors (Basel); 2021 Oct; 11(10):. PubMed ID: 34677349 [TBL] [Abstract][Full Text] [Related]
52. Influence of a passive lower-limb exoskeleton during simulated industrial work tasks on physical load, upper body posture, postural control and discomfort. Luger T; Seibt R; Cobb TJ; Rieger MA; Steinhilber B Appl Ergon; 2019 Oct; 80():152-160. PubMed ID: 31280799 [TBL] [Abstract][Full Text] [Related]
53. Model-Based Comparison of Passive and Active Assistance Designs in an Occupational Upper Limb Exoskeleton for Overhead Lifting. Zhou X; Zheng L IISE Trans Occup Ergon Hum Factors; 2021; 9(3-4):167-185. PubMed ID: 34254566 [TBL] [Abstract][Full Text] [Related]
54. Robust walking control of a lower limb rehabilitation exoskeleton coupled with a musculoskeletal model via deep reinforcement learning. Luo S; Androwis G; Adamovich S; Nunez E; Su H; Zhou X J Neuroeng Rehabil; 2023 Mar; 20(1):34. PubMed ID: 36935514 [TBL] [Abstract][Full Text] [Related]
55. Bio-inspired control of joint torque and knee stiffness in a robotic lower limb exoskeleton using a central pattern generator. Schrade SO; Nager Y; Wu AR; Gassert R; Ijspeert A IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1387-1394. PubMed ID: 28814014 [TBL] [Abstract][Full Text] [Related]
56. Design and Optimization of an Index Finger Exoskeleton With Semi-Wrapped Fixtures and Series Elastic Actuators. Sun N; Cheng L; Xia X; Han L IEEE Trans Neural Syst Rehabil Eng; 2023; 31():2622-2631. PubMed ID: 37279133 [TBL] [Abstract][Full Text] [Related]
57. Design and Validation of a Lightweight Hip Exoskeleton Driven by Series Elastic Actuator With Two-Motor Variable Speed Transmission. Zhang T; Ning C; Li Y; Wang M IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2456-2466. PubMed ID: 36001514 [TBL] [Abstract][Full Text] [Related]
58. Feasibility Study of the Electromagnetic Damper for Cable Structures Using Real-Time Hybrid Simulation. Jung HY; Kim IH; Jung HJ Sensors (Basel); 2017 Oct; 17(11):. PubMed ID: 29088077 [TBL] [Abstract][Full Text] [Related]
59. Relationship between assistive torque and knee biomechanics during exoskeleton walking in individuals with crouch gait. Lerner ZF; Damiano DL; Bulea TC IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():491-497. PubMed ID: 28813868 [TBL] [Abstract][Full Text] [Related]
60. Dynamic Model of a Humanoid Exoskeleton of a Lower Limb with Hydraulic Actuators. Glowinski S; Obst M; Majdanik S; Potocka-Banaś B Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34069145 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]