These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 38039337)

  • 1. Learning massive interpretable gene regulatory networks of the human brain by merging Bayesian networks.
    Bernaola N; Michiels M; LarraƱaga P; Bielza C
    PLoS Comput Biol; 2023 Dec; 19(12):e1011443. PubMed ID: 38039337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A hybrid Bayesian network learning method for constructing gene networks.
    Wang M; Chen Z; Cloutier S
    Comput Biol Chem; 2007 Oct; 31(5-6):361-72. PubMed ID: 17889617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SAGA: a hybrid search algorithm for Bayesian Network structure learning of transcriptional regulatory networks.
    Adabor ES; Acquaah-Mensah GK; Oduro FT
    J Biomed Inform; 2015 Feb; 53():27-35. PubMed ID: 25181467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Fast and Furious Bayesian Network and Its Application of Identifying Colon Cancer to Liver Metastasis Gene Regulatory Networks.
    Liu E; Li J; Kinnebrew GH; Zhang P; Zhang Y; Cheng L; Li L
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(4):1325-1335. PubMed ID: 31581091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An improved Bayesian network method for reconstructing gene regulatory network based on candidate auto selection.
    Xing L; Guo M; Liu X; Wang C; Wang L; Zhang Y
    BMC Genomics; 2017 Nov; 18(Suppl 9):844. PubMed ID: 29219084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An estimation method for inference of gene regulatory net-work using Bayesian network with uniting of partial problems.
    Watanabe Y; Seno S; Takenaka Y; Matsuda H
    BMC Genomics; 2012; 13 Suppl 1(Suppl 1):S12. PubMed ID: 22369509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Learning Bayesian networks with integration of indirect prior knowledge.
    Pei B; Rowe DW; Shin DG
    Int J Data Min Bioinform; 2010; 4(5):505-19. PubMed ID: 21133038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variable neighborhood search for reverse engineering of gene regulatory networks.
    Nicholson C; Goodwin L; Clark C
    J Biomed Inform; 2017 Jan; 65():120-131. PubMed ID: 27919733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inference of Gene Regulatory Network Based on Local Bayesian Networks.
    Liu F; Zhang SW; Guo WF; Wei ZG; Chen L
    PLoS Comput Biol; 2016 Aug; 12(8):e1005024. PubMed ID: 27479082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An effective structure learning method for constructing gene networks.
    Chen XW; Anantha G; Wang X
    Bioinformatics; 2006 Jun; 22(11):1367-74. PubMed ID: 16543279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining gene expression data and prior knowledge for inferring gene regulatory networks via Bayesian networks using structural restrictions.
    de Campos LM; Cano A; Castellano JG; Moral S
    Stat Appl Genet Mol Biol; 2019 May; 18(3):. PubMed ID: 31042646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reverse engineering directed gene regulatory networks from transcriptomics and proteomics data of biomining bacterial communities with approximate Bayesian computation and steady-state signalling simulations.
    Buetti-Dinh A; Herold M; Christel S; El Hajjami M; Delogu F; Ilie O; Bellenberg S; Wilmes P; Poetsch A; Sand W; Vera M; Pivkin IV; Friedman R; Dopson M
    BMC Bioinformatics; 2020 Jan; 21(1):23. PubMed ID: 31964336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A sub-space greedy search method for efficient Bayesian Network inference.
    Zhang Q; Cao Y; Li Y; Zhu Y; Sun SS; Guo D
    Comput Biol Med; 2011 Sep; 41(9):763-70. PubMed ID: 21741635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Empirical evaluation of scoring functions for Bayesian network model selection.
    Liu Z; Malone B; Yuan C
    BMC Bioinformatics; 2012; 13 Suppl 15(Suppl 15):S14. PubMed ID: 23046392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TIGRNCRN: Trustful inference of gene regulatory network using clustering and refining the network.
    Pirgazi J; Khanteymoori AR; Jalilkhani M
    J Bioinform Comput Biol; 2019 Jun; 17(3):1950018. PubMed ID: 31288638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discerning Functional Connections in the Pulsed Neural Networks with the Dynamic Bayesian Network Structure Search Method Based on a Genetic Algorithm.
    Dong C; Chen XY; Dong CY
    J Comput Biol; 2019 Nov; 26(11):1243-1252. PubMed ID: 31211610
    [No Abstract]   [Full Text] [Related]  

  • 17. Fitting Boolean networks from steady state perturbation data.
    Almudevar A; McCall MN; McMurray H; Land H
    Stat Appl Genet Mol Biol; 2011 Oct; 10(1):. PubMed ID: 23089817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. System-Based Differential Gene Network Analysis for Characterizing a Sample-Specific Subnetwork.
    Tanaka Y; Tamada Y; Ikeguchi M; Yamashita F; Okuno Y
    Biomolecules; 2020 Feb; 10(2):. PubMed ID: 32075209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Bayesian data fusion based approach for learning genome-wide transcriptional regulatory networks.
    Sauta E; Demartini A; Vitali F; Riva A; Bellazzi R
    BMC Bioinformatics; 2020 May; 21(1):219. PubMed ID: 32471360
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic studies of complex human diseases: characterizing SNP-disease associations using Bayesian networks.
    Han B; Chen XW; Talebizadeh Z; Xu H
    BMC Syst Biol; 2012; 6 Suppl 3(Suppl 3):S14. PubMed ID: 23281790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.