BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 38039668)

  • 1. Sequential activation strategy of triazinyl resorufin for high selectivity fluorescence GSH detection.
    Liu T; Li Y; Mi L; Wei Y; Zhang Y; Mao W
    Talanta; 2024 Mar; 269():125477. PubMed ID: 38039668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new xanthene-based fluorescent probe with a red light emission for selectively detecting glutathione and imaging in living cells.
    Wan Y; Li Y; Liao Z; Tang Z; Li Y; Zhao Y; Xiong B
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Dec; 223():117265. PubMed ID: 31234021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A sensitive and rapid detection of glutathione based on a fluorescence-enhanced "turn-on" strategy.
    Ma Q; Wang M; Cai H; Li F; Fu S; Liu Y; Zhao Y
    J Mater Chem B; 2021 Apr; 9(16):3563-3572. PubMed ID: 33909744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activatable two-photon fluorescence nanoprobe for bioimaging of glutathione in living cells and tissues.
    Meng HM; Jin Z; Lv Y; Yang C; Zhang XB; Tan W; Yu RQ
    Anal Chem; 2014 Dec; 86(24):12321-6. PubMed ID: 25399841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A lysosome targeting probe based on fluorescent protein chromophore for selectively detecting GSH and Cys in living cells.
    Shen B; Zhu W; Zhi X; Qian Y
    Talanta; 2020 Feb; 208():120461. PubMed ID: 31816791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A highly sensitive two-photon fluorescent probe for glutathione with near-infrared emission at 719 nm and intracellular glutathione imaging.
    Huang C; Qian Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jun; 217():68-76. PubMed ID: 30927573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction of a unique fluorescent probe for rapid and highly sensitive detection of glutathione in living cells and zebrafish.
    Zhou Z; Li P; Liu Z; Wu C; Zhang Y; Li H
    Talanta; 2022 Jun; 243():123364. PubMed ID: 35287018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cascade reaction-based trinal-site probe for sensing and imaging of cysteine and glutathione.
    Chen S; Luo Y; Wang N; Chen X; Guo Y; Deng H; Xu J; Chen SW; Wang J
    Talanta; 2020 Feb; 208():119934. PubMed ID: 31816805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a near-infrared ratiometric fluorescent probe for glutathione using an intramolecular charge transfer signaling mechanism and its bioimaging application in living cells.
    Zhou Y; Zhang L; Zhang X; Zhu ZJ
    J Mater Chem B; 2019 Feb; 7(5):809-814. PubMed ID: 32254855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Near-Infrared Fluorescent Probe with High Quantum Yield and Its Application in the Selective Detection of Glutathione in Living Cells and Tissues.
    Xie JY; Li CY; Li YF; Fei J; Xu F; Ou-Yang J; Liu J
    Anal Chem; 2016 Oct; 88(19):9746-9752. PubMed ID: 27605432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel strategy for rhodamine B-based fluorescent probes with a selective glutathione response for bioimaging in living cells.
    Li Z; Xiong W; He X; Qi X; Ding F; Shen J
    Analyst; 2020 Jun; 145(12):4239-4244. PubMed ID: 32436498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A fluorescent probe for intracellular cysteine overcoming the interference by glutathione.
    Tian M; Guo F; Sun Y; Zhang W; Miao F; Liu Y; Song G; Ho CL; Yu X; Sun JZ; Wong WY
    Org Biomol Chem; 2014 Aug; 12(32):6128-33. PubMed ID: 24991968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Meso-aryltellurium-BODIPY-based fluorescence turn-on probe for selective, sensitive and fast glutathione sensing in HepG2 cells.
    Wan QH; Gu M; Shi WJ; Tang YX; Lu Y; Xu C; Chen XS; Wu XT; Gao L; Han DX; Niu L
    Talanta; 2024 Jan; 267():125251. PubMed ID: 37776804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A peptide-based fluorescent sensor for selective imaging of glutathione in living cells and zebrafish.
    Li Y; Di C; Wu J; Si J; Chen Y; Zhang H; Ge Y; Liu D; Liu W
    Anal Bioanal Chem; 2020 Jan; 412(2):481-488. PubMed ID: 31728594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescent probe for highly selective detection of cysteine in living cells.
    Zhou B; Wang B; Bai M; Dong M; Tang X
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Jun; 294():122523. PubMed ID: 36868018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coumarin-Based Turn-On Fluorescence Probe for Specific Detection of Glutathione over Cysteine and Homocysteine.
    He L; Xu Q; Liu Y; Wei H; Tang Y; Lin W
    ACS Appl Mater Interfaces; 2015 Jun; 7(23):12809-13. PubMed ID: 26016515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a NIR fluorescent probe for highly selective and sensitive detection of cysteine in living cells and in vivo.
    Qi S; Zhang H; Wang X; Lv J; Liu D; Shen W; Li Y; Du J; Yang Q
    Talanta; 2021 Nov; 234():122685. PubMed ID: 34364484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyanine-based fluorescent probe for highly selective detection of glutathione in cell cultures and live mouse tissues.
    Yin J; Kwon Y; Kim D; Lee D; Kim G; Hu Y; Ryu JH; Yoon J
    J Am Chem Soc; 2014 Apr; 136(14):5351-8. PubMed ID: 24649915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A reversible turn-on fluorescent probe for quantitative imaging and dynamic monitoring of cellular glutathione.
    Hou S; Wang Y; Zhang Y; Wang W; Zhou X
    Anal Chim Acta; 2022 Jun; 1214():339957. PubMed ID: 35649643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. BODIPY-based turn-on fluorescent probes for cysteine and homocysteine.
    Gao J; Tao Y; Wang N; He J; Zhang J; Zhao W
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Oct; 203():77-84. PubMed ID: 29860171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.