BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 38040137)

  • 1. Grass carp Il-2 promotes neutrophil extracellular traps formation via inducing ROS production and autophagy in vitro.
    Lv M; Wang Y; Yu J; Kong Y; Zhou H; Zhang A; Wang X
    Fish Shellfish Immunol; 2024 Jan; 144():109261. PubMed ID: 38040137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DEHP induces neutrophil extracellular traps formation and apoptosis in carp isolated from carp blood via promotion of ROS burst and autophagy.
    Yirong C; Shengchen W; Jiaxin S; Shuting W; Ziwei Z
    Environ Pollut; 2020 Jul; 262():114295. PubMed ID: 32179220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The atypical small GTPase GEM/Kir is a negative regulator of the NADPH oxidase and NETs production through macroautophagy.
    Johnson JL; Ramadass M; Rahman F; Meneses-Salas E; Zgajnar NR; Carvalho Gontijo R; Zhang J; Kiosses WB; Zhu YP; Hedrick CC; Perego M; Gunton JE; Pestonjamasp K; Napolitano G; Catz SD
    J Leukoc Biol; 2021 Oct; 110(4):629-649. PubMed ID: 34085299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of Il-2 on the expression of granzyme B- and perforin-like genes and its functional implication in grass carp peripheral blood neutrophils.
    Lv M; Qiu X; Wang J; Wang Y; Liu Q; Zhou H; Zhang A; Wang X
    Fish Shellfish Immunol; 2022 May; 124():472-479. PubMed ID: 35483596
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Díaz-Godínez C; Fonseca Z; Néquiz M; Laclette JP; Rosales C; Carrero JC
    Front Cell Infect Microbiol; 2018; 8():184. PubMed ID: 29922599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Histone Acetylation Promotes Neutrophil Extracellular Trap Formation.
    Hamam HJ; Khan MA; Palaniyar N
    Biomolecules; 2019 Jan; 9(1):. PubMed ID: 30669408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Down-regulated miR-146a expression with increased neutrophil extracellular traps and apoptosis formation in autoimmune-mediated diffuse alveolar hemorrhage.
    Hsieh YT; Chou YC; Kuo PY; Tsai HW; Yen YT; Shiau AL; Wang CR
    J Biomed Sci; 2022 Aug; 29(1):62. PubMed ID: 36028828
    [TBL] [Abstract][Full Text] [Related]  

  • 8. β-Conglycinin induces the formation of neutrophil extracellular traps dependent on NADPH oxidase-derived ROS, PAD4, ERK1/2 and p38 signaling pathways in mice.
    Liu X; Fu Y; Wang J; Wu D; Li S; Wang C; Yang Z; Zhou E
    Food Funct; 2021 Jan; 12(1):154-161. PubMed ID: 33289753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atrazine hinders PMA-induced neutrophil extracellular traps in carp via the promotion of apoptosis and inhibition of ROS burst, autophagy and glycolysis.
    Wang S; Zheng S; Zhang Q; Yang Z; Yin K; Xu S
    Environ Pollut; 2018 Dec; 243(Pt A):282-291. PubMed ID: 30193222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Triclocarban evoked neutrophil extracellular trap formation in common carp (Cyprinus carpio L.) by modulating SIRT3-mediated ROS crosstalk with ERK1/2/p38 signaling.
    Li S; Wang Y; Yu D; Zhang Y; Wang X; Shi M; Xiao Y; Li X; Xiao H; Chen L; Xiong X
    Fish Shellfish Immunol; 2022 Oct; 129():85-95. PubMed ID: 36057428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hypertonic Saline Suppresses NADPH Oxidase-Dependent Neutrophil Extracellular Trap Formation and Promotes Apoptosis.
    Nadesalingam A; Chen JHK; Farahvash A; Khan MA
    Front Immunol; 2018; 9():359. PubMed ID: 29593709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanosilver induces the formation of neutrophil extracellular traps in mouse neutrophil granulocytes.
    Wang C; Liu X; Han Z; Zhang X; Wang J; Wang K; Yang Z; Wei Z
    Ecotoxicol Environ Saf; 2019 Nov; 183():109508. PubMed ID: 31408819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Staphylococcus aureus Panton-Valentine Leukocidin triggers an alternative NETosis process targeting mitochondria.
    Mazzoleni V; Zimmermann K; Smirnova A; Tarassov I; Prévost G
    FASEB J; 2021 Feb; 35(2):e21167. PubMed ID: 33241563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and functional characterization of interleukin-12 receptor beta 1 and 2 in grass carp (Ctenopharyngodon idella).
    Qiu X; Wang D; Lv M; Sun H; Ren J; Wang X; Zhou H
    Mol Immunol; 2022 Mar; 143():58-67. PubMed ID: 35042118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular characterization, expression analysis, and biological effects of interleukin-8 in grass carp Ctenopharyngodon idellus.
    Wang TT; Song XH; Bao GM; Zhao LX; Yu X; Zhao J
    Fish Shellfish Immunol; 2013 Nov; 35(5):1421-32. PubMed ID: 23994423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cathepsin C from extracellular histone-induced M1 alveolar macrophages promotes NETosis during lung ischemia-reperfusion injury.
    Yu J; Fu Y; Gao J; Zhang Q; Zhang N; Zhang Z; Jiang X; Chen C; Wen Z
    Redox Biol; 2024 Aug; 74():103231. PubMed ID: 38861835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A key role for Rac and Pak signaling in neutrophil extracellular traps (NETs) formation defines a new potential therapeutic target.
    Gavillet M; Martinod K; Renella R; Wagner DD; Williams DA
    Am J Hematol; 2018 Feb; 93(2):269-276. PubMed ID: 29124783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rab27a is essential for the formation of neutrophil extracellular traps (NETs) in neutrophil-like differentiated HL60 cells.
    Kawakami T; He J; Morita H; Yokoyama K; Kaji H; Tanaka C; Suemori S; Tohyama K; Tohyama Y
    PLoS One; 2014; 9(1):e84704. PubMed ID: 24404184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular and functional characterization of IL-1 receptor type 2 in grass carp: a potent inhibitor of IL-1β signaling in head kidney leukocytes.
    Yang X; Wang S; Du L; Yang K; Wang X; Zhang A; Zhou H
    Dev Comp Immunol; 2013 Dec; 41(4):738-45. PubMed ID: 23999049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial permeability transition pore is involved in oxidative burst and NETosis of human neutrophils.
    Vorobjeva N; Galkin I; Pletjushkina O; Golyshev S; Zinovkin R; Prikhodko A; Pinegin V; Kondratenko I; Pinegin B; Chernyak B
    Biochim Biophys Acta Mol Basis Dis; 2020 May; 1866(5):165664. PubMed ID: 31926265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.