BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 38040170)

  • 1. Understanding differential aspects of microdiffusion (channeling) in the Coenzyme Q and Cytochrome c regions of the mitochondrial respiratory system.
    Lenaz G; Nesci S; Genova ML
    Mitochondrion; 2024 Jan; 74():101822. PubMed ID: 38040170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mobility and function of coenzyme Q (ubiquinone) in the mitochondrial respiratory chain.
    Lenaz G; Genova ML
    Biochim Biophys Acta; 2009 Jun; 1787(6):563-73. PubMed ID: 19268424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic evidence against partitioning of the ubiquinone pool and the catalytic relevance of respiratory-chain supercomplexes.
    Blaza JN; Serreli R; Jones AJ; Mohammed K; Hirst J
    Proc Natl Acad Sci U S A; 2014 Nov; 111(44):15735-40. PubMed ID: 25331896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of integrated electron transfer in the mitochondrial respiratory chain: random collisions vs. solid state electron channeling.
    Lenaz G; Genova ML
    Am J Physiol Cell Physiol; 2007 Apr; 292(4):C1221-39. PubMed ID: 17035300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two separate pathways underlie NADH and succinate oxidation in swine heart mitochondria: Kinetic evidence on the mobile electron carriers.
    Nesci S; Algieri C; Trombetti F; Fabbri M; Lenaz G
    Biochim Biophys Acta Bioenerg; 2023 Aug; 1864(3):148977. PubMed ID: 37059413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The mitochondrial respiratory chain is partially organized in a supercomplex assembly: kinetic evidence using flux control analysis.
    Bianchi C; Genova ML; Parenti Castelli G; Lenaz G
    J Biol Chem; 2004 Aug; 279(35):36562-9. PubMed ID: 15205457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A critical appraisal of the role of respiratory supercomplexes in mitochondria.
    Genova ML; Lenaz G
    Biol Chem; 2013 May; 394(5):631-9. PubMed ID: 23449521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of coenzyme Q in the mitochondrial respiratory chain. Reconstitution of activity in coenzyme Q deficient mutants of yeast.
    Brown GG; Beattie DS
    Biochemistry; 1977 Oct; 16(20):4449-54. PubMed ID: 199236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A critical appraisal of the mitochondrial coenzyme Q pool.
    Lenaz G
    FEBS Lett; 2001 Dec; 509(2):151-5. PubMed ID: 11741580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coenzyme q and the respiratory chain: coenzyme q pool and mitochondrial supercomplexes.
    Enriquez JA; Lenaz G
    Mol Syndromol; 2014 Jul; 5(3-4):119-40. PubMed ID: 25126045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional role of mitochondrial respiratory supercomplexes.
    Genova ML; Lenaz G
    Biochim Biophys Acta; 2014 Apr; 1837(4):427-43. PubMed ID: 24246637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and organization of mitochondrial respiratory complexes: a new understanding of an old subject.
    Lenaz G; Genova ML
    Antioxid Redox Signal; 2010 Apr; 12(8):961-1008. PubMed ID: 19739941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supercomplex organization of the mitochondrial respiratory chain and the role of the Coenzyme Q pool: pathophysiological implications.
    Genova ML; Bianchi C; Lenaz G
    Biofactors; 2005; 25(1-4):5-20. PubMed ID: 16873926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and functional organization of the mitochondrial respiratory chain: a dynamic super-assembly.
    Lenaz G; Genova ML
    Int J Biochem Cell Biol; 2009 Oct; 41(10):1750-1772. PubMed ID: 19711505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial Supercomplexes Do Not Enhance Catalysis by Quinone Channeling.
    Fedor JG; Hirst J
    Cell Metab; 2018 Sep; 28(3):525-531.e4. PubMed ID: 29937372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of Coenzyme Q in mitochondrial electron transport.
    Lenaz G; Fato R; Formiggini G; Genova ML
    Mitochondrion; 2007 Jun; 7 Suppl():S8-33. PubMed ID: 17485246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Steady-state kinetics of the reduction of coenzyme Q analogs by complex I (NADH:ubiquinone oxidoreductase) in bovine heart mitochondria and submitochondrial particles.
    Fato R; Estornell E; Di Bernardo S; Pallotti F; Parenti Castelli G; Lenaz G
    Biochemistry; 1996 Feb; 35(8):2705-16. PubMed ID: 8611577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The indispensability of phospholipid and ubiquinone in mitochondrial electron transfer from succinate to cytochrome c.
    Yu L; Yu CA; King TE
    J Biol Chem; 1978 Apr; 253(8):2657-63. PubMed ID: 204658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ubiquinol:cytochrome c oxidoreductase (complex III). Effect of inhibitors on cytochrome b reduction in submitochondrial particles and the role of ubiquinone in complex III.
    Matsuno-Yagi A; Hatefi Y
    J Biol Chem; 2001 Jun; 276(22):19006-11. PubMed ID: 11262412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coenzyme Q analogues reconstitute electron transport and proton ejection but not the antimycin-induced "red shift" in mitochondria from coenzyme Q deficient mutants of the yeast Saccharomyces cerevisiae.
    Beattie DS; Clejan L
    Biochemistry; 1986 Mar; 25(6):1395-402. PubMed ID: 3008830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.