BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 38040178)

  • 1. Bioconversion of volatile fatty acids from organic wastes to produce high-value products by photosynthetic bacteria: A review.
    Liang J; Zhang P; Zhang R; Chang J; Chen L; Zhang G; Wang A
    Environ Res; 2024 Feb; 242():117796. PubMed ID: 38040178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A review of volatile fatty acids production from organic wastes: Intensification techniques and separation methods.
    Sun S; Wang X; Cheng S; Lei Y; Sun W; Wang K; Li Z
    J Environ Manage; 2024 Jun; 360():121062. PubMed ID: 38735068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A hybrid dry-fermentation and membrane contactor system: Enhanced volatile fatty acid (VFA) production and recovery from organic solid wastes.
    Yesil H; Calli B; Tugtas AE
    Water Res; 2021 Mar; 192():116831. PubMed ID: 33485265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Valorization of food waste fermentation liquid into single cell protein by photosynthetic bacteria via stimulating carbon metabolic pathway and environmental behaviour.
    Zhu Z; Wu Y; Hu W; Zheng X; Chen Y
    Bioresour Technol; 2022 Oct; 361():127704. PubMed ID: 35908636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing the anaerobic bioconversion of complex organics in food wastes for volatile fatty acids production by zero-valent iron and persulfate stimulation.
    Cao J; Zhang Q; Wu S; Luo J; Wu Y; Zhang L; Feng Q; Fang F; Xue Z
    Sci Total Environ; 2019 Jun; 669():540-546. PubMed ID: 30889443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dark fermentation: Production and utilization of volatile fatty acid from different wastes- A review.
    Pandey AK; Pilli S; Bhunia P; Tyagi RD; Surampalli RY; Zhang TC; Kim SH; Pandey A
    Chemosphere; 2022 Feb; 288(Pt 1):132444. PubMed ID: 34626658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioengineering of anaerobic digestion for volatile fatty acids, hydrogen or methane production: A critical review.
    Wainaina S; Lukitawesa ; Kumar Awasthi M; Taherzadeh MJ
    Bioengineered; 2019 Dec; 10(1):437-458. PubMed ID: 31570035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancement of waste activated sludge protein conversion and volatile fatty acids accumulation during waste activated sludge anaerobic fermentation by carbohydrate substrate addition: the effect of pH.
    Feng L; Chen Y; Zheng X
    Environ Sci Technol; 2009 Jun; 43(12):4373-80. PubMed ID: 19603649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Agroindustrial waste as a resource for volatile fatty acids production via anaerobic fermentation.
    Greses S; Tomás-Pejó E; Gónzalez-Fernández C
    Bioresour Technol; 2020 Feb; 297():122486. PubMed ID: 31796382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biohydrogen production from dairy manures with acidification pretreatment by anaerobic fermentation.
    Xing Y; Li Z; Fan Y; Hou H
    Environ Sci Pollut Res Int; 2010 Feb; 17(2):392-9. PubMed ID: 19499259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Life cycle assessment of volatile fatty acids production from protein- and carbohydrate-rich organic wastes.
    Gálvez-Martos JL; Greses S; Magdalena JA; Iribarren D; Tomás-Pejó E; González-Fernández C
    Bioresour Technol; 2021 Feb; 321():124528. PubMed ID: 33333483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new strategy to recover from volatile fatty acid inhibition in anaerobic digestion by photosynthetic bacteria.
    Zhao W; Jeanne Huang J; Hua B; Huang Z; Droste RL; Chen L; Wang B; Yang C; Yang S
    Bioresour Technol; 2020 Sep; 311():123501. PubMed ID: 32416492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anaerobic fermentation of organic solid wastes: volatile fatty acid production and separation.
    Yesil H; Tugtas AE; Bayrakdar A; Calli B
    Water Sci Technol; 2014; 69(10):2132-8. PubMed ID: 24845331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of different vegetable wastes on the performance of volatile fatty acids production by anaerobic fermentation.
    Zhang Q; Lu Y; Zhou X; Wang X; Zhu J
    Sci Total Environ; 2020 Dec; 748():142390. PubMed ID: 33113691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced volatile fatty acids production from anaerobic fermentation of food waste: A mini-review focusing on acidogenic metabolic pathways.
    Zhou M; Yan B; Wong JWC; Zhang Y
    Bioresour Technol; 2018 Jan; 248(Pt A):68-78. PubMed ID: 28693950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Factors influencing volatile fatty acids production from food wastes via anaerobic digestion.
    Lukitawesa ; Patinvoh RJ; Millati R; Sárvári-Horváth I; Taherzadeh MJ
    Bioengineered; 2020 Dec; 11(1):39-52. PubMed ID: 31880192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metagenomic insights into improving mechanisms of Fe
    Yang G; Xu C; Varjani S; Zhou Y; Wc Wong J; Duan G
    Bioresour Technol; 2022 Oct; 361():127703. PubMed ID: 35907599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual resource utilization for tannery sludge: Effects of sludge biochars (BCs) on volatile fatty acids (VFAs) production from sludge anaerobic digestion.
    Zhai S; Li M; Xiong Y; Wang D; Fu S
    Bioresour Technol; 2020 Nov; 316():123903. PubMed ID: 32763801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Waste-derived volatile fatty acids as carbon source for added-value fermentation approaches.
    Chalima A; de Castro LF; Burgstaller L; Sampaio P; Carolas AL; Gildemyn S; Velghe F; Ferreira BS; Pais C; Neureiter M; Dietrich T; Topakas E
    FEMS Microbiol Lett; 2021 May; 368(9):. PubMed ID: 34036336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of volatile fatty acids (VFAs) from five commercial bioplastics via acidogenic fermentation.
    García-Depraect O; Lebrero R; Rodriguez-Vega S; Börner RA; Börner T; Muñoz R
    Bioresour Technol; 2022 Sep; 360():127655. PubMed ID: 35870672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.