These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 38040299)
21. Detection and localization of two hydrogenases in Methylococcus capsulatus (Bath) and their potential role in methane metabolism. Hanczár T; Csáki R; Bodrossy L; Murrell JC; Kovács KL Arch Microbiol; 2002 Feb; 177(2):167-72. PubMed ID: 11807566 [TBL] [Abstract][Full Text] [Related]
22. Transcriptional Regulation of Methanol Dehydrogenases in the Methanotrophic Bacterium Methylococcus capsulatus Bath by Soluble and Insoluble Lanthanides. Xie R; Takashino M; Igarashi K; Kitagawa W; Kato S Microbes Environ; 2023; 38(4):. PubMed ID: 38092408 [TBL] [Abstract][Full Text] [Related]
23. Development and validation of promoter-probe vectors for the study of methane monooxygenase gene expression in Methylococcus capsulatus Bath. Ali H; Murrell JC Microbiology (Reading); 2009 Mar; 155(Pt 3):761-771. PubMed ID: 19246747 [TBL] [Abstract][Full Text] [Related]
24. Transcription of nitrification genes by the methane-oxidizing bacterium, Methylococcus capsulatus strain Bath. Poret-Peterson AT; Graham JE; Gulledge J; Klotz MG ISME J; 2008 Dec; 2(12):1213-20. PubMed ID: 18650926 [TBL] [Abstract][Full Text] [Related]
25. Why OrfY? Characterization of MMOD, a long overlooked component of the soluble methane monooxygenase from Methylococcus capsulatus (Bath). Merkx M; Lippard SJ J Biol Chem; 2002 Feb; 277(8):5858-65. PubMed ID: 11709550 [TBL] [Abstract][Full Text] [Related]
26. Three-dimensional structure determination of a protein supercomplex that oxidizes methane to formaldehyde in Methylococcus capsulatus (Bath). Myronova N; Kitmitto A; Collins RF; Miyaji A; Dalton H Biochemistry; 2006 Oct; 45(39):11905-14. PubMed ID: 17002291 [TBL] [Abstract][Full Text] [Related]
27. Draft genome sequence of the methane-oxidizing bacterium Methylococcus capsulatus (Texas). Kleiveland CR; Hult LT; Kuczkowska K; Jacobsen M; Lea T; Pope PB J Bacteriol; 2012 Dec; 194(23):6626. PubMed ID: 23144383 [TBL] [Abstract][Full Text] [Related]
28. Revisiting the mechanism of dioxygen activation in soluble methane monooxygenase from M. capsulatus (Bath): evidence for a multi-step, proton-dependent reaction pathway. Tinberg CE; Lippard SJ Biochemistry; 2009 Dec; 48(51):12145-58. PubMed ID: 19921958 [TBL] [Abstract][Full Text] [Related]
29. Production of Bio-Based Isoprene by the Mevalonate Pathway Cassette in Lee HW; Park JH; Lee HS; Choi W; Seo SH; Anggraini ID; Choi ES; Lee HW J Microbiol Biotechnol; 2019 Oct; 29(10):1656-1664. PubMed ID: 31546303 [TBL] [Abstract][Full Text] [Related]
30. Sequencing and analysis of the Mmethylococcus capsulatus (Bath) solublemethane monooxygenase genes. Coufal DE; Blazyk JL; Whittington DA; Wu WW; Rosenzweig AC; Lippard SJ Eur J Biochem; 2000 Apr; 267(8):2174-85. PubMed ID: 10759840 [TBL] [Abstract][Full Text] [Related]
31. Quantitative proteomic analysis of metabolic regulation by copper ions in Methylococcus capsulatus (Bath). Kao WC; Chen YR; Yi EC; Lee H; Tian Q; Wu KM; Tsai SF; Yu SS; Chen YJ; Aebersold R; Chan SI J Biol Chem; 2004 Dec; 279(49):51554-60. PubMed ID: 15385566 [TBL] [Abstract][Full Text] [Related]
32. Inactivation of the particulate methane monooxygenase (pMMO) in Methylococcus capsulatus (Bath) by acetylene. Pham MD; Lin YP; Van Vuong Q; Nagababu P; Chang BT; Ng KY; Chen CH; Han CC; Chen CH; Li MS; Yu SS; Chan SI Biochim Biophys Acta; 2015 Dec; 1854(12):1842-1852. PubMed ID: 26275807 [TBL] [Abstract][Full Text] [Related]
33. Anaerobic Production of Isoprene by Engineered Aldridge J; Carr S; Weber KA; Buan NR Appl Environ Microbiol; 2021 Feb; 87(6):. PubMed ID: 33452028 [TBL] [Abstract][Full Text] [Related]
34. Determination of the carbon kinetic isotope effects on propane hydroxylation mediated by the methane monooxygenases from Methylococcus capsulatus (Bath) by using stable carbon isotopic analysis. Huang DS; Wu SH; Wang YS; Yu SS; Chan SI Chembiochem; 2002 Aug; 3(8):760-5. PubMed ID: 12203974 [TBL] [Abstract][Full Text] [Related]
35. Isolation of isoprene degrading bacteria from soils, development of isoA gene probes and identification of the active isoprene-degrading soil community using DNA-stable isotope probing. El Khawand M; Crombie AT; Johnston A; Vavlline DV; McAuliffe JC; Latone JA; Primak YA; Lee SK; Whited GM; McGenity TJ; Murrell JC Environ Microbiol; 2016 Sep; 18(8):2743-53. PubMed ID: 27102583 [TBL] [Abstract][Full Text] [Related]
36. Detoxification, Active Uptake, and Intracellular Accumulation of Chromium Species by a Methane-Oxidizing Bacterium. Enbaia S; Eswayah A; Hondow N; Gardiner PHE; Smith TJ Appl Environ Microbiol; 2021 Jan; 87(2):. PubMed ID: 33127813 [TBL] [Abstract][Full Text] [Related]
37. Genome-scale metabolic reconstruction and metabolic versatility of an obligate methanotroph Gupta A; Ahmad A; Chothwe D; Madhu MK; Srivastava S; Sharma VK PeerJ; 2019; 7():e6685. PubMed ID: 31316867 [TBL] [Abstract][Full Text] [Related]
38. Metabolic engineering of Yarrowia lipolytica for the production of isoprene. Shaikh KM; Odaneth AA Biotechnol Prog; 2021 Nov; 37(6):e3201. PubMed ID: 34369095 [TBL] [Abstract][Full Text] [Related]
39. Metal reconstitution of particulate methane monooxygenase and heterologous expression of the pmoB subunit. Smith SM; Balasubramanian R; Rosenzweig AC Methods Enzymol; 2011; 495():195-210. PubMed ID: 21419923 [TBL] [Abstract][Full Text] [Related]
40. Expression and characterization of ferredoxin and flavin adenine dinucleotide binding domains of the reductase component of soluble methane monooxygenase from Methylococcus capsulatus (Bath). Blazyk JL; Lippard SJ Biochemistry; 2002 Dec; 41(52):15780-94. PubMed ID: 12501207 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]