BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 38040309)

  • 1. Engineering the reductive tricarboxylic acid pathway in Aureobasidium pullulans for enhanced biosynthesis of poly-L-malic acid.
    Qin Z; Feng J; Li Y; Zheng Y; Moore C; Yang ST
    Bioresour Technol; 2024 Feb; 393():130122. PubMed ID: 38040309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolome- and genome-scale model analyses for engineering of
    Feng J; Yang J; Yang W; Chen J; Jiang M; Zou X
    Biotechnol Biofuels; 2018; 11():94. PubMed ID: 29632554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of polymalic acid and malic acid by Aureobasidium pullulans fermentation and acid hydrolysis.
    Zou X; Zhou Y; Yang ST
    Biotechnol Bioeng; 2013 Aug; 110(8):2105-13. PubMed ID: 23436475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering rTCA pathway and C4-dicarboxylate transporter for L-malic acid production.
    Chen X; Wang Y; Dong X; Hu G; Liu L
    Appl Microbiol Biotechnol; 2017 May; 101(10):4041-4052. PubMed ID: 28229207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of poly(malic acid) from sugarcane juice in fermentation by Aureobasidium pullulans: Kinetics and process economics.
    Wei P; Cheng C; Lin M; Zhou Y; Yang ST
    Bioresour Technol; 2017 Jan; 224():581-589. PubMed ID: 27839861
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced production of Ca²⁺-polymalate (PMA) with high molecular mass by Aureobasidium pullulans var. pullulans MCW.
    Wang YK; Chi Z; Zhou HX; Liu GL; Chi ZM
    Microb Cell Fact; 2015 Aug; 14():115. PubMed ID: 26249335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced poly(L-malic acid) production from pretreated cane molasses by Aureobasidium pullulans in fed-batch fermentation.
    Xia J; Xu J; Hu L; Liu X
    Prep Biochem Biotechnol; 2016 Nov; 46(8):798-802. PubMed ID: 26829650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of the L-malate biosynthesis pathway involved in poly(β-L-malic acid) production in Aureobasidium melanogenum GXZ-6 by addition of metabolic intermediates and inhibitors.
    Zeng W; Zhang B; Liu Q; Chen G; Liang Z
    J Microbiol; 2019 Apr; 57(4):281-287. PubMed ID: 30721461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosynthesis of poly(β-L-malic acid) from rubberwood enzymatic hydrolysates in co-fermentation by Aureobasidium pullulans.
    Zeng D; Zhang Y; Ma X; Li J; Yin F; Li D; Bie W
    Int J Biol Macromol; 2024 Feb; 257(Pt 1):128605. PubMed ID: 38061508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polymalic acid fermentation by Aureobasidium pullulans for malic acid production from soybean hull and soy molasses: Fermentation kinetics and economic analysis.
    Cheng C; Zhou Y; Lin M; Wei P; Yang ST
    Bioresour Technol; 2017 Jan; 223():166-174. PubMed ID: 27792926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Economic co-production of poly(malic acid) and pullulan from Jerusalem artichoke tuber by Aureobasidium pullulans HA-4D.
    Xia J; Xu J; Liu X; Xu J; Wang X; Li X
    BMC Biotechnol; 2017 Feb; 17(1):20. PubMed ID: 28231788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cofactor and CO2 donor regulation involved in reductive routes for polymalic acid production by Aureobasidium pullulans CCTCC M2012223.
    Zou X; Tu G; Zan Z
    Bioprocess Biosyst Eng; 2014 Oct; 37(10):2131-6. PubMed ID: 24700133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of poly(β-l-malic acid) by Aureobasidium pullulans HA-4D under solid-state fermentation.
    Xia J; Li R; He A; Xu J; Liu X; Li X; Xu J
    Bioresour Technol; 2017 Nov; 244(Pt 1):289-295. PubMed ID: 28780262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rewiring the reductive tricarboxylic acid pathway and L-malate transport pathway of Aspergillus oryzae for overproduction of L-malate.
    Liu J; Xie Z; Shin HD; Li J; Du G; Chen J; Liu L
    J Biotechnol; 2017 Jul; 253():1-9. PubMed ID: 28506930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient poly(β-L-malic acid) production from cassava hydrolysate by cell recycle of Aureobasidium pullulans.
    Liu W; Si Z; Zhang H; Wei P; Xu Z
    Appl Microbiol Biotechnol; 2022 Apr; 106(8):2855-2868. PubMed ID: 35445856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Poly(malic acid) production from liquefied corn starch by simultaneous saccharification and fermentation with a novel isolated Aureobasidium pullulans GXL-1 strain and its techno-economic analysis.
    Zeng W; Zhang B; Jiang L; Liu Y; Ding S; Chen G; Liang Z
    Bioresour Technol; 2020 May; 304():122990. PubMed ID: 32078901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct conversion of cheese whey to polymalic acid by mixed culture of Aureobasidium pullulans and permeabilized Kluyveromyces marxianus.
    Xia J; He J; Xu J; Liu X; Qiu Z; Xu N; Su L
    Bioresour Technol; 2021 Oct; 337():125443. PubMed ID: 34171705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Construction and fermentation control of reductive TCA pathway for malic acid production in Saccharomyces cerevisiae].
    Yan D; Wang C; Zhou J; Liu Y; Yang M; Xing J
    Sheng Wu Gong Cheng Xue Bao; 2013 Oct; 29(10):1484-93. PubMed ID: 24432663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient Production of Polymalic Acid by a Novel Isolated Aureobasidium pullulans Using Metabolic Intermediates and Inhibitors.
    Zeng W; Zhang B; Chen G; Li M; Liang Z
    Appl Biochem Biotechnol; 2019 Feb; 187(2):612-627. PubMed ID: 30014335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic Engineering of
    Chen Y; Han A; Wang M; Wei D; Wang W
    J Agric Food Chem; 2023 Mar; 71(9):4043-4050. PubMed ID: 36812909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.