These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38040347)

  • 1. Fine-scale monitoring of lake ice phenology by synthesizing remote sensed and climatologic features based on high-resolution satellite constellation and modeling.
    Tong J; Lin Y; Fan C; Liu K; Chen T; Zeng F; Zhan P; Ke L; Gao Y; Song C
    Sci Total Environ; 2024 Feb; 912():169002. PubMed ID: 38040347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monitoring of Lake Ice Phenology Changes in Bosten Lake Based on Bayesian Change Detection Algorithm and Passive Microwave Remote Sensing (PMRS) Data.
    Kuluwan Y; Rusuli Y; Ainiwaer M
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. What caused the spatial heterogeneity of lake ice phenology changes on the Tibetan Plateau?
    Cai Y; Ke CQ; Xiao Y; Wu J
    Sci Total Environ; 2022 Aug; 836():155517. PubMed ID: 35483456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of Ice Phenology of Middle and Large Lakes on the Tibetan Plateau.
    Sun L; Wang B; Ma Y; Shi X; Wang Y
    Sensors (Basel); 2023 Feb; 23(3):. PubMed ID: 36772699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ice phenology interactions with water and air temperatures in high mountain lakes.
    Sabás I; Miró A; Piera J; Catalan J; Camarero L; Buchaca T; Ventura M
    Sci Total Environ; 2024 Sep; 941():173571. PubMed ID: 38830415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ice phenology dataset reconstructed from remote sensing and modelling for lakes over the Tibetan Plateau.
    Wu Y; Guo L; Zhang B; Zheng H; Fan L; Chi H; Li J; Wang S
    Sci Data; 2022 Dec; 9(1):743. PubMed ID: 36460685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Frequency Glacial Lake Mapping Using Time Series of Sentinel-1A/1B SAR Imagery: An Assessment for the Southeastern Tibetan Plateau.
    Zhang M; Chen F; Tian B; Liang D; Yang A
    Int J Environ Res Public Health; 2020 Feb; 17(3):. PubMed ID: 32046245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Does the 11-year solar cycle affect lake and river ice phenology?
    Schmidt DF; Grise KM; Pace ML
    PLoS One; 2023; 18(12):e0294995. PubMed ID: 38091313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shifting Patterns of Summer Lake Color Phenology in Over 26,000 US Lakes.
    Topp SN; Pavelsky TM; Dugan HA; Yang X; Gardner J; Ross MRV
    Water Resour Res; 2021 May; 57(5):e2020WR029123. PubMed ID: 34219822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The state and fate of lake ice thickness in the Northern Hemisphere.
    Li X; Long D; Huang Q; Zhao F
    Sci Bull (Beijing); 2022 Mar; 67(5):537-546. PubMed ID: 36546175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of change-based and shape-based data fusion methods in fine-resolution land surface phenology monitoring with Landsat and Sentinel-2 data.
    Wang C; He T; Song DX; Zhang L; Zhu P; Man Y
    Sci Total Environ; 2024 Jun; 927():172014. PubMed ID: 38547996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Climate change alters the reproductive phenology and investment of a lacustrine fish, the three-spine stickleback.
    Hovel RA; Carlson SM; Quinn TP
    Glob Chang Biol; 2017 Jun; 23(6):2308-2320. PubMed ID: 27901297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of thresholding methods for shoreline extraction from Sentinel-2 and Landsat-8 imagery: Extreme Lake Salda, track of Mars on Earth.
    Karaman M
    J Environ Manage; 2021 Nov; 298():113481. PubMed ID: 34392093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monitoring ice variations in Qinghai Lake from 1979 to 2016 using passive microwave remote sensing data.
    Cai Y; Ke CQ; Duan Z
    Sci Total Environ; 2017 Dec; 607-608():120-131. PubMed ID: 28688254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Local variation in the timing and advancement of lake ice breakup and impacts on settling dynamics in a migratory waterbird.
    Pöysä H
    Sci Total Environ; 2022 Mar; 811():151397. PubMed ID: 34740659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of Soil Organic Carbon Content in the Ebinur Lake Wetland, Xinjiang, China, Based on Multisource Remote Sensing Data and Ensemble Learning Algorithms.
    Xie B; Ding J; Ge X; Li X; Han L; Wang Z
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Autonomous System for Lake Ice Monitoring.
    Aslamov I; Kirillin G; Makarov M; Kucher K; Gnatovsky R; Granin N
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A unified model for high resolution mapping of global lake (>1 ha) clarity using Landsat imagery data.
    Song K; Wang Q; Liu G; Jacinthe PA; Li S; Tao H; Du Y; Wen Z; Wang X; Guo W; Wang Z; Shi K; Du J; Shang Y; Lyu L; Hou J; Zhang B; Cheng S; Lyu Y; Fei L
    Sci Total Environ; 2022 Mar; 810():151188. PubMed ID: 34710411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Earlier ice loss accelerates lake warming in the Northern Hemisphere.
    Li X; Peng S; Xi Y; Woolway RI; Liu G
    Nat Commun; 2022 Sep; 13(1):5156. PubMed ID: 36056046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial difference and its influencing factors in ice-covered lakes on the three poles.
    Cai M; Wang B; Han J; Yang J; Zhang X; Guan X; Jiang H
    Environ Res; 2024 Jul; 252(Pt 1):118753. PubMed ID: 38527718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.