BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 38040784)

  • 21. A Framework to Advance Biomarker Development in the Diagnosis, Outcome Prediction, and Treatment of Traumatic Brain Injury.
    Wilde EA; Wanner IB; Kenney K; Gill J; Stone JR; Disner S; Schnakers C; Meyer R; Prager EM; Haas M; Jeromin A
    J Neurotrauma; 2022 Apr; 39(7-8):436-457. PubMed ID: 35057637
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Predicting Clinical Outcomes 7-10 Years after Severe Traumatic Brain Injury: Exploring the Prognostic Utility of the IMPACT Lab Model and Cerebrospinal Fluid UCH-L1 and MAP-2.
    Svingos AM; Robicsek SA; Hayes RL; Wang KK; Robertson CS; Brophy GM; Papa L; Gabrielli A; Hannay HJ; Bauer RM; Heaton SC
    Neurocrit Care; 2022 Aug; 37(1):172-183. PubMed ID: 35229233
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prediction of Mortality Among Patients With Isolated Traumatic Brain Injury Using Machine Learning Models in Asian Countries: An International Multi-Center Cohort Study.
    Song J; Shin SD; Jamaluddin SF; Chiang WC; Tanaka H; Song KJ; Ahn S; Park JH; Kim J; Cho HJ; Moon S; Jeon ET
    J Neurotrauma; 2023 Jul; 40(13-14):1376-1387. PubMed ID: 36656672
    [No Abstract]   [Full Text] [Related]  

  • 24. Machine learning algorithms performed no better than regression models for prognostication in traumatic brain injury.
    Gravesteijn BY; Nieboer D; Ercole A; Lingsma HF; Nelson D; van Calster B; Steyerberg EW;
    J Clin Epidemiol; 2020 Jun; 122():95-107. PubMed ID: 32201256
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Predicting the Individual Treatment Effect of Neurosurgery for Patients with Traumatic Brain Injury in the Low-Resource Setting: A Machine Learning Approach in Uganda.
    Adil SM; Elahi C; Gramer R; Spears CA; Fuller AT; Haglund MM; Dunn TW
    J Neurotrauma; 2021 Apr; 38(7):928-939. PubMed ID: 33054545
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development and validation of a prehospital-stage prediction tool for traumatic brain injury: a multicentre retrospective cohort study in Korea.
    Choi Y; Park JH; Hong KJ; Ro YS; Song KJ; Shin SD
    BMJ Open; 2022 Jan; 12(1):e055918. PubMed ID: 35022177
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prediction of in-hospital hypokalemia using machine learning and first hospitalization day records in patients with traumatic brain injury.
    Zhou Z; Huang C; Fu P; Huang H; Zhang Q; Wu X; Yu Q; Sun Y
    CNS Neurosci Ther; 2023 Jan; 29(1):181-191. PubMed ID: 36258296
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Classification of Electroencephalogram in a Mouse Model of Traumatic Brain Injury Using Machine Learning Approaches
    Vishwanath M; Jafarlou S; Shin I; Dutt N; Rahmani AM; Lim MM; Cao H
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3335-3338. PubMed ID: 33018718
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mortality Prediction in Severe Traumatic Brain Injury Using Traditional and Machine Learning Algorithms.
    Wu X; Sun Y; Xu X; Steyerberg EW; Helmrich IRAR; Lecky F; Guo J; Li X; Feng J; Mao Q; Xie G; Maas AIR; Gao G; Jiang J
    J Neurotrauma; 2023 Jul; 40(13-14):1366-1375. PubMed ID: 37062757
    [No Abstract]   [Full Text] [Related]  

  • 30. Prognosis in moderate-severe traumatic brain injury in a Swedish cohort and external validation of the IMPACT models.
    Rostami E; Gustafsson D; Hånell A; Howells T; Lenell S; Lewén A; Enblad P
    Acta Neurochir (Wien); 2022 Mar; 164(3):615-624. PubMed ID: 34936014
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Systemic immune inflammation index and peripheral blood carbon dioxide concentration at admission predict poor prognosis in patients with severe traumatic brain injury.
    Chen L; Xia S; Zuo Y; Lin Y; Qiu X; Chen Q; Feng T; Xia X; Shao Q; Wang S
    Front Immunol; 2022; 13():1034916. PubMed ID: 36700228
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Machine Learning for Predicting In-Hospital Mortality After Traumatic Brain Injury in Both High-Income and Low- and Middle-Income Countries.
    Warman PI; Seas A; Satyadev N; Adil SM; Kolls BJ; Haglund MM; Dunn TW; Fuller AT
    Neurosurgery; 2022 May; 90(5):605-612. PubMed ID: 35244101
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Case-mix, care pathways, and outcomes in patients with traumatic brain injury in CENTER-TBI: a European prospective, multicentre, longitudinal, cohort study.
    Steyerberg EW; Wiegers E; Sewalt C; Buki A; Citerio G; De Keyser V; Ercole A; Kunzmann K; Lanyon L; Lecky F; Lingsma H; Manley G; Nelson D; Peul W; Stocchetti N; von Steinbüchel N; Vande Vyvere T; Verheyden J; Wilson L; Maas AIR; Menon DK;
    Lancet Neurol; 2019 Oct; 18(10):923-934. PubMed ID: 31526754
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Clinical decision support for severe trauma patients: Machine learning based definition of a bundle of care for hemorrhagic shock and traumatic brain injury.
    Lang E; Neuschwander A; Favé G; Abback PS; Esnault P; Geeraerts T; Harrois A; Hanouz JL; Kipnis E; Leone M; Legros V; Mellati N; Pottecher J; Hamada S; Pirracchio R;
    J Trauma Acute Care Surg; 2022 Jan; 92(1):135-143. PubMed ID: 34554136
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A machine learning approach to identify functional biomarkers in human prefrontal cortex for individuals with traumatic brain injury using functional near-infrared spectroscopy.
    Karamzadeh N; Amyot F; Kenney K; Anderson A; Chowdhry F; Dashtestani H; Wassermann EM; Chernomordik V; Boccara C; Wegman E; Diaz-Arrastia R; Gandjbakhche AH
    Brain Behav; 2016 Nov; 6(11):e00541. PubMed ID: 27843695
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Predicted Unfavorable Neurologic Outcome Is Overestimated by the Marshall Computed Tomography Score, Corticosteroid Randomization After Significant Head Injury (CRASH), and International Mission for Prognosis and Analysis of Clinical Trials in Traumatic Brain Injury (IMPACT) Models in Patients with Severe Traumatic Brain Injury Managed with Early Decompressive Craniectomy.
    Charry JD; Tejada JH; Pinzon MA; Tejada WA; Ochoa JD; Falla M; Tovar JH; Cuellar-Bahamón AM; Solano JP
    World Neurosurg; 2017 May; 101():554-558. PubMed ID: 28223249
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of hospital-acquired pneumonia on long-term recovery and hospital resource utilization following moderate to severe traumatic brain injury.
    Kumar RG; Kesinger MR; Juengst SB; Brooks MM; Fabio A; Dams-O'Connor K; Pugh MJ; Sperry JL; Wagner AK
    J Trauma Acute Care Surg; 2020 Apr; 88(4):491-500. PubMed ID: 31804412
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prognostication in critically ill patients with severe traumatic brain injury: the TBI-Prognosis multicentre feasibility study.
    Turgeon AF; Lauzier F; Zarychanski R; Fergusson DA; Léger C; McIntyre LA; Bernard F; Rigamonti A; Burns K; Griesdale DE; Green R; Scales DC; Meade MO; Savard M; Shemilt M; Paquet J; Gariépy JL; Lavoie A; Reddy K; Jichici D; Pagliarello G; Zygun D; Moore L;
    BMJ Open; 2017 Apr; 7(4):e013779. PubMed ID: 28416497
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interpretable machine learning model for imaging-based outcome prediction after cardiac arrest.
    Liu C; Elmer J; Arefan D; Pease M; Wu S
    Resuscitation; 2023 Oct; 191():109894. PubMed ID: 37414243
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Discovery and validation of temporal patterns involved in human brain ketometabolism in cerebral microdialysis fluids of traumatic brain injury patients.
    Eiden M; Christinat N; Chakrabarti A; Sonnay S; Miroz JP; Cuenoud B; Oddo M; Masoodi M
    EBioMedicine; 2019 Jun; 44():607-617. PubMed ID: 31202815
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.