These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 38040834)

  • 1. Overcoming T Cell Exhaustion in Tumor Microenvironment via Immune Checkpoint Modulation with Nano-Delivery Systems for Enhanced Immunotherapy.
    Huang X; Zhang W
    Small Methods; 2024 Aug; 8(8):e2301326. PubMed ID: 38040834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advancing cancer immunotherapy through siRNA-based gene silencing for immune checkpoint blockade.
    Choi Y; Seok SH; Yoon HY; Ryu JH; Kwon IC
    Adv Drug Deliv Rev; 2024 Jun; 209():115306. PubMed ID: 38626859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nano-sized drug delivery systems to potentiate the immune checkpoint blockade therapy.
    Shim MK; Song SK; Jeon SI; Hwang KY; Kim K
    Expert Opin Drug Deliv; 2022 Jun; 19(6):641-652. PubMed ID: 35603410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. T cell exhaustion in human cancers.
    Kang K; Lin X; Chen P; Liu H; Liu F; Xiong W; Li G; Yi M; Li X; Wang H; Xiang B
    Biochim Biophys Acta Rev Cancer; 2024 Sep; 1879(5):189162. PubMed ID: 39089484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. T cell-mediated targeted delivery of tadalafil regulates immunosuppression and polyamine metabolism to overcome immune checkpoint blockade resistance in hepatocellular carcinoma.
    Wang X; Zhang Q; Zhou J; Xiao Z; Liu J; Deng S; Hong X; Huang W; Cai M; Guo Y; Huang J; Wang Y; Lin L; Zhu K
    J Immunother Cancer; 2023 Feb; 11(2):. PubMed ID: 36813307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reversal of T-cell exhaustion: Mechanisms and synergistic approaches.
    Hu Y; Zhang Y; Shi F; Yang R; Yan J; Han T; Guan L
    Int Immunopharmacol; 2024 Sep; 138():112571. PubMed ID: 38941674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Tumor Microenvironment in the Response to Immune Checkpoint Blockade Therapies.
    Petitprez F; Meylan M; de Reyniès A; Sautès-Fridman C; Fridman WH
    Front Immunol; 2020; 11():784. PubMed ID: 32457745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gold Nano Frameworks with Mesopores for Synergistic Immune-Thermal Therapy in Hepatic Carcinoma: A Paradigm Shift in Immune Checkpoint Blockade.
    Feng L; Luo B; Li B; Gou M; Luo Y; Liu G; Ye X; Xu J; Fan Y; You Z
    ACS Appl Mater Interfaces; 2024 Sep; 16(35):45901-45916. PubMed ID: 39169670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CU06-1004-Induced Vascular Normalization Improves Immunotherapy by Modulating Tumor Microenvironment
    Park S; Oh JH; Park DJ; Zhang H; Noh M; Kim Y; Kim YS; Kim H; Kim YM; Ha SJ; Kwon YG
    Front Immunol; 2020; 11():620166. PubMed ID: 33584714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. T cell exhaustion initiates tertiary lymphoid structures and turbocharges cancer-immunity cycle.
    Lin WP; Li H; Sun ZJ
    EBioMedicine; 2024 Jun; 104():105154. PubMed ID: 38749300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoparticle-Based Immunotherapy for Reversing T-Cell Exhaustion.
    Li F; Wang Y; Chen D; Du Y
    Int J Mol Sci; 2024 Jan; 25(3):. PubMed ID: 38338674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparing syngeneic and autochthonous models of breast cancer to identify tumor immune components that correlate with response to immunotherapy in breast cancer.
    Lal JC; Townsend MG; Mehta AK; Oliwa M; Miller E; Sotayo A; Cheney E; Mittendorf EA; Letai A; Guerriero JL
    Breast Cancer Res; 2021 Aug; 23(1):83. PubMed ID: 34353349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CD8
    Zhang B; Liu J; Mo Y; Zhang K; Huang B; Shang D
    Front Immunol; 2024; 15():1476904. PubMed ID: 39372416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting NK Cell Checkpoint Receptors or Molecules for Cancer Immunotherapy.
    Zhang C; Liu Y
    Front Immunol; 2020; 11():1295. PubMed ID: 32714324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advancements in nanomedicine delivery systems: unraveling immune regulation strategies for tumor immunotherapy.
    Zhang Y; Chen X; Hu B; Zou B; Xu Y
    Nanomedicine (Lond); 2024; 19(21-22):1821-1840. PubMed ID: 39011582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reversing T-cell Exhaustion in Cancer: Lessons Learned from PD-1/PD-L1 Immune Checkpoint Blockade.
    Budimir N; Thomas GD; Dolina JS; Salek-Ardakani S
    Cancer Immunol Res; 2022 Feb; 10(2):146-153. PubMed ID: 34937730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drug-Loaded Mesoporous Silica Nanoparticles Enhance Antitumor Immunotherapy by Regulating MDSCs.
    Xu C; Amna N; Shi Y; Sun R; Weng C; Chen J; Dai H; Wang C
    Molecules; 2024 May; 29(11):. PubMed ID: 38893313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoparticle-Mediated Synergistic Chemoimmunotherapy for Cancer Treatment.
    Lang X; Wang X; Han M; Guo Y
    Int J Nanomedicine; 2024; 19():4533-4568. PubMed ID: 38799699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic tagging to drive arginine nano-assembly to metabolically potentiate immune checkpoint blockade therapy.
    Zang J; Yang Y; Zheng X; Yang Y; Zhao Y; Miao Z; Zhang T; Gu J; Liu Y; Yin W; Ma X; Ding Q; Dong H; Li Y; Li Y
    Biomaterials; 2023 Jan; 292():121938. PubMed ID: 36493715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blocking LTB
    Yan J; Zhu J; Li X; Yang R; Xiao W; Huang C; Zheng C
    Phytomedicine; 2023 Oct; 119():154968. PubMed ID: 37531900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.