BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 38040834)

  • 1. Overcoming T Cell Exhaustion in Tumor Microenvironment via Immune Checkpoint Modulation with Nano-Delivery Systems for Enhanced Immunotherapy.
    Huang X; Zhang W
    Small Methods; 2023 Dec; ():e2301326. PubMed ID: 38040834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advancing cancer immunotherapy through siRNA-based gene silencing for immune checkpoint blockade.
    Choi Y; Seok SH; Yoon HY; Ryu JH; Kwon IC
    Adv Drug Deliv Rev; 2024 Jun; 209():115306. PubMed ID: 38626859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. T cell-mediated targeted delivery of tadalafil regulates immunosuppression and polyamine metabolism to overcome immune checkpoint blockade resistance in hepatocellular carcinoma.
    Wang X; Zhang Q; Zhou J; Xiao Z; Liu J; Deng S; Hong X; Huang W; Cai M; Guo Y; Huang J; Wang Y; Lin L; Zhu K
    J Immunother Cancer; 2023 Feb; 11(2):. PubMed ID: 36813307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nano-sized drug delivery systems to potentiate the immune checkpoint blockade therapy.
    Shim MK; Song SK; Jeon SI; Hwang KY; Kim K
    Expert Opin Drug Deliv; 2022 Jun; 19(6):641-652. PubMed ID: 35603410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blocking LTB
    Yan J; Zhu J; Li X; Yang R; Xiao W; Huang C; Zheng C
    Phytomedicine; 2023 Oct; 119():154968. PubMed ID: 37531900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advancing immune checkpoint blockade in colorectal cancer therapy with nanotechnology.
    Liu Z; Xiang Y; Zheng Y; Kang X
    Front Immunol; 2022; 13():1027124. PubMed ID: 36341334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic tagging to drive arginine nano-assembly to metabolically potentiate immune checkpoint blockade therapy.
    Zang J; Yang Y; Zheng X; Yang Y; Zhao Y; Miao Z; Zhang T; Gu J; Liu Y; Yin W; Ma X; Ding Q; Dong H; Li Y; Li Y
    Biomaterials; 2023 Jan; 292():121938. PubMed ID: 36493715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparing syngeneic and autochthonous models of breast cancer to identify tumor immune components that correlate with response to immunotherapy in breast cancer.
    Lal JC; Townsend MG; Mehta AK; Oliwa M; Miller E; Sotayo A; Cheney E; Mittendorf EA; Letai A; Guerriero JL
    Breast Cancer Res; 2021 Aug; 23(1):83. PubMed ID: 34353349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pharmaceutical targeting Th2-mediated immunity enhances immunotherapy response in breast cancer.
    Chen Y; Sun J; Luo Y; Liu J; Wang X; Feng R; Huang J; Du H; Li Q; Tan J; Ren G; Wang X; Li H
    J Transl Med; 2022 Dec; 20(1):615. PubMed ID: 36564797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CU06-1004-Induced Vascular Normalization Improves Immunotherapy by Modulating Tumor Microenvironment
    Park S; Oh JH; Park DJ; Zhang H; Noh M; Kim Y; Kim YS; Kim H; Kim YM; Ha SJ; Kwon YG
    Front Immunol; 2020; 11():620166. PubMed ID: 33584714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Tumor Microenvironment in the Response to Immune Checkpoint Blockade Therapies.
    Petitprez F; Meylan M; de Reyniès A; Sautès-Fridman C; Fridman WH
    Front Immunol; 2020; 11():784. PubMed ID: 32457745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of antitumor immunotherapy using mitochondria-targeted cancer cell membrane-biomimetic MOF-mediated sonodynamic therapy and checkpoint blockade immunotherapy.
    Luo J; Wang X; Shi Z; Zeng Y; He L; Cao J; Sun Y; Zhang T; Huang P
    J Nanobiotechnology; 2022 May; 20(1):228. PubMed ID: 35568916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reversing T-cell Exhaustion in Cancer: Lessons Learned from PD-1/PD-L1 Immune Checkpoint Blockade.
    Budimir N; Thomas GD; Dolina JS; Salek-Ardakani S
    Cancer Immunol Res; 2022 Feb; 10(2):146-153. PubMed ID: 34937730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nano-immunotherapy: overcoming delivery challenge of immune checkpoint therapy.
    Kiaie SH; Salehi-Shadkami H; Sanaei MJ; Azizi M; Shokrollahi Barough M; Nasr MS; Sheibani M
    J Nanobiotechnology; 2023 Sep; 21(1):339. PubMed ID: 37735656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Boosting Checkpoint Immunotherapy with Biomaterials.
    Liu L; Pan Y; Zhao C; Huang P; Chen X; Rao L
    ACS Nano; 2023 Feb; 17(4):3225-3258. PubMed ID: 36746639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gamma delta T-cell-based immune checkpoint therapy: attractive candidate for antitumor treatment.
    Gao Z; Bai Y; Lin A; Jiang A; Zhou C; Cheng Q; Liu Z; Chen X; Zhang J; Luo P
    Mol Cancer; 2023 Feb; 22(1):31. PubMed ID: 36793048
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Noninvasively Deciphering the Immunosuppressive Tumor Microenvironment Using Galectin-1 PET to Inform Immunotherapy Responses.
    Liu N; Yang X; Gao C; Wang J; Zeng Y; Zhang L; Yin Q; Zhang T; Zhou H; Li K; Du J; Zhou S; Zhao X; Zhu H; Yang Z; Liu Z
    J Nucl Med; 2024 May; 65(5):728-734. PubMed ID: 38514084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of tumor cell pyroptosis in anti-tumor immunotherapy.
    Zhang L; Bai H; Zhou J; Ye L; Gao L
    Cell Insight; 2024 Jun; 3(3):100153. PubMed ID: 38464416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tumor Microenvironment-Activable Manganese-Boosted Catalytic Immunotherapy Combined with PD-1 Checkpoint Blockade.
    Zhao Z; Dong S; Liu Y; Wang J; Ba L; Zhang C; Cao X; Wu C; Yang P
    ACS Nano; 2022 Dec; 16(12):20400-20418. PubMed ID: 36441901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting MDSC for Immune-Checkpoint Blockade in Cancer Immunotherapy: Current Progress and New Prospects.
    Li T; Liu T; Zhu W; Xie S; Zhao Z; Feng B; Guo H; Yang R
    Clin Med Insights Oncol; 2021; 15():11795549211035540. PubMed ID: 34408525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.