BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 38040834)

  • 21. Monocyte-derived APCs are central to the response of PD1 checkpoint blockade and provide a therapeutic target for combination therapy.
    Schetters STT; Rodriguez E; Kruijssen LJW; Crommentuijn MHW; Boon L; Van den Bossche J; Den Haan JMM; Van Kooyk Y
    J Immunother Cancer; 2020 Jul; 8(2):. PubMed ID: 32690667
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recent advances in tumor microenvironment-targeted nanomedicine delivery approaches to overcome limitations of immune checkpoint blockade-based immunotherapy.
    Kim J; Hong J; Lee J; Fakhraei Lahiji S; Kim YH
    J Control Release; 2021 Apr; 332():109-126. PubMed ID: 33571549
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Combinational Immunotherapy for Hepatocellular Carcinoma: Radiotherapy, Immune Checkpoint Blockade and Beyond.
    Lee YH; Tai D; Yip C; Choo SP; Chew V
    Front Immunol; 2020; 11():568759. PubMed ID: 33117354
    [TBL] [Abstract][Full Text] [Related]  

  • 24. PD-1 and LAG-3 Checkpoint Blockade: Potential Avenues for Therapy in B-Cell Lymphoma.
    Tobin JWD; Bednarska K; Campbell A; Keane C
    Cells; 2021 May; 10(5):. PubMed ID: 34068762
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tumor Niche Network-Defined Subtypes Predict Immunotherapy Response of Esophageal Squamous Cell Cancer.
    Ko KP; Zhang S; Huang Y; Kim B; Zou G; Jun S; Zhang J; Martin C; Dunbar KJ; Efe G; Rustgi AK; Zhang H; Nakagawa H; Park JI
    bioRxiv; 2023 Feb; ():. PubMed ID: 36824935
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Overcoming Immune Checkpoint Blockade Resistance via EZH2 Inhibition.
    Kim HJ; Cantor H; Cosmopoulos K
    Trends Immunol; 2020 Oct; 41(10):948-963. PubMed ID: 32976740
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nano-vaccines combining customized in situ anti-PD-L1 depot for enhanced tumor immunotherapy.
    Chen Q; Sun M; Li Y; Huang L; Zu C; Kuang X; Zhao J; Hao M; Ma T; Li C; Tu J; Sun C; Du Y
    Nanomedicine; 2023 Sep; 53():102693. PubMed ID: 37343780
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prospects for personalized combination immunotherapy for solid tumors based on adoptive cell therapies and immune checkpoint blockade therapies.
    Kato D; Yaguchi T; Iwata T; Morii K; Nakagawa T; Nishimura R; Kawakami Y
    Nihon Rinsho Meneki Gakkai Kaishi; 2017; 40(1):68-77. PubMed ID: 28539557
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comprehensive Testing of Chemotherapy and Immune Checkpoint Blockade in Preclinical Cancer Models Identifies Additive Combinations.
    Principe N; Aston WJ; Hope DE; Tilsed CM; Fisher SA; Boon L; Dick IM; Chin WL; McDonnell AM; Nowak AK; Lake RA; Chee J; Lesterhuis WJ
    Front Immunol; 2022; 13():872295. PubMed ID: 35634282
    [TBL] [Abstract][Full Text] [Related]  

  • 30.
    Sun S; Tang Q; Wang Y; Zhang L; Chen J; Xu M; Sun L; Cui L; Liang X
    ACS Appl Mater Interfaces; 2022 Jun; ():. PubMed ID: 35657950
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Blockade of immune checkpoints in lymph nodes through locoregional delivery augments cancer immunotherapy.
    Francis DM; Manspeaker MP; Schudel A; Sestito LF; O'Melia MJ; Kissick HT; Pollack BP; Waller EK; Thomas SN
    Sci Transl Med; 2020 Sep; 12(563):. PubMed ID: 32998971
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Conserved angio-immune subtypes of the tumor microenvironment predict response to immune checkpoint blockade therapy.
    Subramanian M; Kabir AU; Barisas D; Krchma K; Choi K
    Cell Rep Med; 2023 Jan; 4(1):100896. PubMed ID: 36630952
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The nexus of dynamic T cell states and immune checkpoint blockade therapy in the periphery and tumor microenvironment.
    Luo H; Wang W; Mai J; Yin R; Cai X; Li Q
    Front Immunol; 2023; 14():1267918. PubMed ID: 37881432
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Efficiently restoring the tumoricidal immunity against resistant malignancies via an immune nanomodulator.
    Chen C; Li A; Sun P; Xu J; Du W; Zhang J; Liu Y; Zhang R; Zhang S; Yang Z; Tang C; Jiang X
    J Control Release; 2020 Aug; 324():574-585. PubMed ID: 32473178
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The application of immune checkpoint blockade in breast cancer and the emerging role of nanoparticle.
    Masoumi E; Tahaghoghi-Hajghorbani S; Jafarzadeh L; Sanaei MJ; Pourbagheri-Sigaroodi A; Bashash D
    J Control Release; 2021 Dec; 340():168-187. PubMed ID: 34743998
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tumor-targeted superantigens produce curative tumor immunity with induction of memory and demonstrated antigen spreading.
    Azulay M; Shahar M; Shany E; Elbaz E; Lifshits S; Törngren M; Friedmann A; Kramer R; Hedlund G
    J Transl Med; 2023 Mar; 21(1):222. PubMed ID: 36967382
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Red blood cell-based vaccines for ameliorating cancer chemoimmunotherapy.
    Su L; Hao Y; Li R; Pan W; Ma X; Weng J; Min Y
    Acta Biomater; 2022 Dec; 154():401-411. PubMed ID: 36241013
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of a cytokine-dominated immunosuppressive class in squamous cell lung carcinoma with implications for immunotherapy resistance.
    Yang M; Lin C; Wang Y; Chen K; Zhang H; Li W
    Genome Med; 2022 Jul; 14(1):72. PubMed ID: 35799269
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A single-beam of light priming the immune responses and boosting cancer photoimmunotherapy.
    Sun Y; Han R; Wang J; Qin Y; Ren Z; Feng X; Liu Q; Wang X
    J Control Release; 2022 Oct; 350():734-747. PubMed ID: 36063959
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Programmable Bispecific Nano-immunoengager That Captures T Cells and Reprograms Tumor Microenvironment.
    Zhang L; Bo R; Wu Y; Li L; Zhu Z; Ma AH; Xiao W; Huang Y; Rojalin T; Yin X; Mao C; Wang F; Wang Y; Zhang H; Low KE; Lee K; Ajena Y; Jing D; Zhang D; Baehr CM; Liu R; Wang L; Li Y; Lam KS
    Nano Lett; 2022 Sep; 22(17):6866-6876. PubMed ID: 35926215
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.