BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 38040834)

  • 41. BET Inhibition Sensitizes Immunologically Cold Rb-Deficient Prostate Cancer to Immune Checkpoint Blockade.
    Olson BM; Chaudagar K; Bao R; Saha SS; Hong C; Li M; Rameshbabu S; Chen R; Thomas A; Patnaik A
    Mol Cancer Ther; 2023 Jun; 22(6):751-764. PubMed ID: 37014264
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Single-cell RNA sequencing in cancer research: discovering novel biomarkers and therapeutic targets for immune checkpoint blockade.
    Sun B; Xun Z; Zhang N; Liu K; Chen X; Zhao H
    Cancer Cell Int; 2023 Dec; 23(1):313. PubMed ID: 38066642
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Disruption of Cell-Cell Communication in Anaplastic Thyroid Cancer as an Immunotherapeutic Opportunity.
    Chakraborty S; Carnazza M; Jarboe T; DeSouza N; Li XM; Moscatello A; Geliebter J; Tiwari RK
    Adv Exp Med Biol; 2021; 1350():33-66. PubMed ID: 34888843
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Combination immunotherapy strategies for glioblastoma.
    Chan HY; Choi J; Jackson C; Lim M
    J Neurooncol; 2021 Feb; 151(3):375-391. PubMed ID: 33611705
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Overcoming immune checkpoint blockade resistance in solid tumors with intermittent ITK inhibition.
    Zhao M; Li L; Kiernan CH; Castro Eiro MD; Dammeijer F; van Meurs M; Brouwers-Haspels I; Wilmsen MEP; Grashof DGB; van de Werken HJG; Hendriks RW; Aerts JG; Mueller YM; Katsikis PD
    Sci Rep; 2023 Sep; 13(1):15678. PubMed ID: 37735204
    [TBL] [Abstract][Full Text] [Related]  

  • 46. PES1 reduces CD8
    Ma N; Hua R; Yang Y; Liu ZC; Pan J; Yu BY; Sun YF; Xie D; Wang Y; Li ZG
    J Biomed Sci; 2023 Mar; 30(1):20. PubMed ID: 36959575
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Strategies to reinvigorate exhausted CD8
    Guan Q; Han M; Guo Q; Yan F; Wang M; Ning Q; Xi D
    Front Immunol; 2023; 14():1204363. PubMed ID: 37398660
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Can Combined Therapy Benefit Immune Checkpoint Blockade Response in Hepatocellular Carcinoma?
    Zhongqi F; Xiaodong S; Yuguo C; Guoyue L
    Anticancer Agents Med Chem; 2019; 19(2):222-228. PubMed ID: 30426903
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Transformable prodrug nanoplatform
    Yang W; Yi J; Zhu R; Guo Y; Zhang K; Cao Y; Li X; Zhang J; Zhang Z; Li Y; Chen X
    Theranostics; 2023; 13(6):1906-1920. PubMed ID: 37064869
    [No Abstract]   [Full Text] [Related]  

  • 50. LncRNA-edited biomimetic nanovaccines combined with anti-TIM-3 for augmented immune checkpoint blockade immunotherapy.
    Zhang Y; Liu F; Tan L; Li X; Dai Z; Cheng Q; Liu J; Wang Y; Huang L; Wang L; Wang Z
    J Control Release; 2023 Sep; 361():671-680. PubMed ID: 37591462
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Boosting Checkpoint Immunotherapy with Biomimetic Nanodrug Delivery Systems.
    Chen W; Tang C; Chen G; Li J; Li N; Zhang H; Di L; Wang R
    Adv Healthc Mater; 2024 Jun; 13(14):e2304284. PubMed ID: 38319961
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Immune responses to SARS-CoV-2 in vaccinated patients receiving checkpoint blockade immunotherapy for cancer.
    Piening A; Ebert E; Khojandi N; Alspach E; Teague RM
    Front Immunol; 2022; 13():1022732. PubMed ID: 36582225
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Emerging Nano-/Microapproaches for Cancer Immunotherapy.
    Mi Y; Hagan CT; Vincent BG; Wang AZ
    Adv Sci (Weinh); 2019 Mar; 6(6):1801847. PubMed ID: 30937265
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Manipulating the Wnt/β-catenin signaling pathway to promote anti-tumor immune infiltration into the TME to sensitize ovarian cancer to ICB therapy.
    Wall JA; Meza-Perez S; Scalise CB; Katre A; Londoño AI; Turbitt WJ; Randall T; Norian LA; Arend RC
    Gynecol Oncol; 2021 Jan; 160(1):285-294. PubMed ID: 33168307
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Immune checkpoint inhibition mediated with liposomal nanomedicine for cancer therapy.
    Ma GL; Lin WF
    Mil Med Res; 2023 Apr; 10(1):20. PubMed ID: 37106400
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Local and Targeted Delivery of Immune Checkpoint Blockade Therapeutics.
    Han X; Li H; Zhou D; Chen Z; Gu Z
    Acc Chem Res; 2020 Nov; 53(11):2521-2533. PubMed ID: 33073988
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Harnessing epithelial-mesenchymal plasticity to boost cancer immunotherapy.
    Gu Y; Zhang Z; Ten Dijke P
    Cell Mol Immunol; 2023 Apr; 20(4):318-340. PubMed ID: 36823234
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Tertiary Lymphoid Structure Raises Survival and Immunotherapy in HPV
    Li H; Zhu SW; Zhou JJ; Chen DR; Liu J; Wu ZZ; Wang WY; Zhang MJ; Sun ZJ
    J Dent Res; 2023 Jun; 102(6):678-688. PubMed ID: 36883630
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Targeting CD89 on tumor-associated macrophages overcomes resistance to immune checkpoint blockade.
    Xu L; Li B; Pi C; Zhu Z; Tao F; Xie K; Feng Y; Xu X; Yin Y; Gu H; Fang J
    J Immunother Cancer; 2022 Dec; 10(12):. PubMed ID: 36460336
    [TBL] [Abstract][Full Text] [Related]  

  • 60. T cell exhaustion assessment algorism in tumor microenvironment predicted clinical outcomes and immunotherapy effects in glioma.
    Chen L; Fu B
    Front Genet; 2022; 13():1087434. PubMed ID: 36531217
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.